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Abstract. Emotion recognition based on text modality has been one of the major topics in
the field of emotion recognition in conversation. How to extract efficient emotional features
is still a challenge. Previous studies utilize contextual semantics and emotion lexicon for af-
fect modeling. However, they ignore information that may be conveyed by the emotion labels
themselves. To address this problem, we propose the sentiment similarity-oriented attention
(SSOA) mechanism, which uses the semantics of emotion labels to guide the model’s attention
when encoding the input conversations. Thus to extract emotion-related information from sen-
tences. Then we use the convolutional neural network (CNN) to extract complex informative
features. In addition, as discrete emotions are highly related with the Valence, Arousal, and
Dominance (VAD) in psychophysiology, we train the VAD regression and emotion classifica-
tion tasks together by using multi-task learning to extract more robust features. The proposed
method outperforms the benchmarks by an absolute increase of over 3.65% in terms of the
average F1 for the emotion classification task, and also outperforms previous strategies for the
VAD regression task on the IEMOCAP database.

Keywords: Sentiment similarity-oriented attention · Text emotion recognition · VAD regres-
sion · Multi-task learning · Convolutional neural network

1 Introduction

Text emotion recognition has emerged as a prevalent research topic that can make some valuable
contributions, not only in social media applications like Facebook, Twitter and Youtube, but also
in more innovative area such as human-computer interaction. It is significant to extract effective
textual features for emotion recognition but still a challenging task.

In the traditional studies, distributed representations or pre-trained embeddings are playing
important roles in state-of-the-art sentiment analysis systems. For example, predictive methods
Word2Vec [1] and Glove [2], which can capture multi-dimensional word semantics. Beyond word-
semantics, there has been a big efforts toward End-to-End neural network models [3] and achieved
better performance by fine-tuning the well pre-trained models such as ELMO [4] and BERT [5].
However, these representations are based on syntactic and semantic information, which do not
enclose specific affective information.

To conduct affective information into training, [6–9] introduced lexical resources to enrich pre-
vious word distributions with sentiment-informative features, as lexical values are intuitively as-
sociated with the word’s sentiment polarity and strength. Especially, [8] proposed a lexicon-based
supervised attention model to extract sentiment-enriched features for document-level emotion clas-
sification. Similarly, [7] introduced a kind of affect-enriched word distribution, which was trained
with lexical resources on the Valence-Arousal-Dominance dimensions. These studies demonstrate
the effectiveness of sentiment lexicons in emotion recognition. However, it’s limited in lexicon vo-
cabulary coverage, and the valence of one sentence is not simply the sum of the lexical polarities of
its constituent words [10]. Emojis are also thought high correlated to affect, therefore, [11] proposed
a model named Deepmoji that adopted a bidirectioinal long short-term memory (BLSTM) with an
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attention mechanism. The Deepmoji predicted emojis from text on a 1246 million tweet corpus and
achieved a good results. Nevertheless, it needs huge effort to collect tweets. In addition, none of
these researches consider the semantics of the emotion labels themselves.

To address the above problems, we propose a sentiment similarity-oriented attention (SSOA)
mechanism, which uses the label embeddings to guide the network to extract emotion-related in-
formation from input sentences. First of all, we compute the sentiment similarity between input
sentences and emotion labels. Then we apply the valence value that selected from an affective lex-
icon as the sentiment polarity. After training the model, we can obtain SSOA, the value of which
represents the weight of each emotion contributes to the final representations. Finally, we use CNN
to capture complex linguistic features as it has been wildly used for text emotion recognition and
shown promising performances such as [12, 13]. Furthermore, [14] indicated that emotion state can
be considered as a point in a continuous space, which is described by the dimensions of valence (V,
the pleasantness of the stimulus), arousal (A, the intensity of emotion produced) and dominance
(D, the degree of power/control exerted by a stimulus), meanwhile, discrete emotions are highly
correlated with VAD in psychophysiology. Therefore, in this work, we adopt a multi-task model for
both discrete emotion classification and dimensional VAD regression to enrich robustness.

To summarize, our main contributions are as follows: 1) we propose a sentiment similarity-
oriented attention mechanism to encode sentiment-informative representations by incorporating label
semantics. 2) we propose to leverage the inter-dependence of two related tasks (i.e. discrete emotion
recognition and dimensional VAD recognition) in improving each other’s performance. The rest of
this paper is organized as follows. Section 2 introduces the proposed method, sentiment similarity-
oriented attention mechanism with multi-task learning. We then conduct a series of comparative
experiments and validation studies in Section 3. Section 4 gives the conclusions.
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Fig. 1. This is the overall framework: sentiment similarity-oriented attention model with multi-task learning
for text-based emotion recognition. We introduce sentiment similarity and sentiment polarity to compute
affective attention. Then, we use this attention to construct sentiment-enriched text representations for both
emotion classification and VAD regression task with multi-task learning.



Title Suppressed Due to Excessive Length 3

2 Sentiment similarity-oriented attention model with multi-task
learning

Figure 1 gives the overall framework. First, the sentence encoder approach is used to generate rep-
resentations for all the input texts and emotional labels. Then we adopt the proposed sentiment
similarity-oriented attention mechanism to obtain the sentiment-enriched text representations, fol-
lowed by a CNN to extract deep informative features. In addition, we introduce multi-task learning
for both emotion classification and VAD regression to extract more robust representations.

2.1 Sentence encoder

[15] has published two kinds of universal sentence encoder for sentence embedding, one is trained
with Transformer encoder [16], while the other is based on deep averaging network (DAN) architec-
ture [17], and all of them can be obtained from the TF Hub website. We use the first one (USE T)
for our sentence encoder part to encode texts and emotion labels into sentence embeddings. Rather
than learning label embeddings from radome, we also explore using contextual embeddings from
transformer-based models. This allow us to use richer semantics derived from pre-training. The
reason that we use sentence embeddings not conventional pre-trained word embeddings as when
computing emotion of one sentence based on word level may cause sentiment inconsistency. For ex-
ample, in a sentence sample ’You are not stupid.’ word not and stupid are both represent negative
emotion, if just concatenate them to represent the emotion of this sentence, it is negative, which
should be positive.

2.2 Sentiment similarity-oriented attention

In this section, we introduce our proposed SSOA mechanism more explicitly. The main idea behind
the SSOA mechanism is to compute affective attention scores between the labels and the representa-
tions of the input sentences that is to be classified. Formally, let S = {s1...si...sN} be the set of the
sentences in the database, where N is the total number of training data set. E = {e1, e2, e3, e4} be the
set of four emotion labels (Happy, Angry, Neutral, Sad) same as in [18], V al = {val1, val2, val3, val4}
be the set of valence scores of the emotions, which selected from ANEW lexicon [19]. We define vali
as the sentiment polarity of each emotion ej , which is a real number and indicates the strength of
each emotion.

For each si in S, 1 ≤ i ≤ l, where l is batch size. And each ej in E, 1 ≤ j ≤ 4, we directly assess
their sentence embedding s∗i and e∗j respectively, produced by the sentence encoder. For the pairwise

sentiment similarity sim
(
s∗i , e

∗
j

)
, we compute it based on the method proposed in [15], that first

compute the cosine similarity of the sentence embedding and emotion embedding, then use arccos
to convert the cosine similarity into an angular distance, which had experimented to have better
performance on sentiment similarity computing, that is,

sim
(
s∗i , e

∗
j

)
=

(
1− arccos

(
s∗>i e∗j

‖ s∗i ‖‖ e∗j ‖
/π

))
(1)

where s∗>i represents the transpose of s∗i . For each sim
(
s∗i , e

∗
j

)
, we use the softmax function to

compute the weight probability wi,j as:

wi,j =
exp

(
sim

(
s∗i , e

∗
j

))∑4
j=1 exp

(
sim

(
s∗i , e

∗
j

)) (2)

Then the affective attention ai,j that sentence si oriented on each emotion is computed as below:

ai,j = α ∗ (valjwi,j) (3)
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We add a scaling hyper-parameter α to increase the range of possible probability values for each
conditional probability term. The sentiment-enriched text representations D can be induced as
follows:

D =

l∑
i=1

4∑
j=1

Wss
∗
i ai,j (4)

where Ws denotes sentence-level weight matrices, D ∈ Rl×4ds

, and ds is the size of sentence embed-
ding.

2.3 Multi-task learning

In this subsection, we introduce multi-task learning for both emotion classification and VAD regres-
sion task, as the knowledge learned in one task can usually improve the performance of another
related task and enrich robustness of different type tasks [20, 21]. Each sentence si in the training
corpus has the following feature and label set [s∗i , (yemo,i, yval,i, yaro,i, ydom,i)], where s∗i represents
the sentence embedding of si, and (yemo,i, yval,i, yaro,i, ydom,i) represent the associated categorical
emotion, dimensional valence, arousal and dominance label separately. We apply CNN and three
dense layers as informative feature extractor, then H∗ is the final document vector. The probability
of emotion classification task is computed by a softmax function:

P (yemo) = softmax (WeH
∗ + be) (5)

where We and be are the parameters of the softmax layer. We use categorical cross entropy loss
function for the first task, the objective function of this system is as follows:

Je = −1

l

l∑
i=1

logP (yemo,i) [yemo,i] (6)

where yemo,i is the expected class label of sentence si and P (yemo,i) is the probability distribution
of emotion labels for si. However, for the continuous labels, the softmax layer is not applicable, we
use the linear function to predict the values for the VAD regression task. Then the predict value
ypval|aro|dom,i for sentence si is calculated using the following formula:

ypval|aro|dom,i = linear (Wsh
∗
i + bs) (7)

where h∗i represents the final vector of sentence si, We and be represent weights and bias respectively.
Given l training sentences, we use the mean squared error loss function for VAD analysis, the loss
between predicted dimensional values ypval|aro|dom,i and original continuous labels yoval|aro|dom,i is

calculated as below:

Ls,val|aro|dom =
1

3l

l∑
i=1

(
ypval|aro|dom,i − y

o
val|aro|dom,i

)2
(8)

Then the objective function for the whole system is:

J = Je + β ∗ (Ls,act + Ls,aro + Ls,dom) (9)

where β is the hyper-parameter to control the influence of the loss of the regression function to
balance the preference between classification and regression disagreements.

3 Experiments and analysis

3.1 Database and lexicon

The IEMOCAP emotion database The Interactive Emotional Dyadic Motion Capture (IEMO-
CAP) database [22] contains videos of ten unique speakers acting in two different scenarios: scripted
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and improvised dialog with dyadic interactions. We only use the transcript data. To compared with
state-of-the-art approaches, we use four emotion categories and three sentiment dimensions with
5531 utterances in this study. The four-class emotion distribution is: 29.6% happy, 30.9% neutral,
19.9% anger and 19.6% sad. Note that happy and excited category in the original annotation are
included into happy class to balance data distribution between classes. For valence, arousal and
dominance labels, self-assessment are used for annotation, in which the scale is from 1 to 5. In this
paper, we focus on speaker-independent emotion recognition. We use the first eight speakers from
session one to four as the training set, and session five as the test set.

The ANEW affective lexicon The emotional values of the English words in Affective Norms for
English Words (ANEW) [19] were calculated by means of measuring the psychological reaction of a
person to the specific word. It contains real-valued scores for valence, arousal and dominance (VAD)
on a scale of 1-9 each, corresponding to the degree from low to high for each dimension respectively.
We select the Valence rating as the sentiment polarity which can distinguish different emotions of
distinct words with the scale ranging from unpleasant to pleasant.

3.2 Experimental setup

Following [15], we set the dimension of the sentence embedding to 512. We use a convolutinoal layer
with 16 filters each for kernel size of (4,4) and a max-pooling layer with the size of (2,2). As for
dense layers, we use three hidden dense layers with 1024, 512 and 256 units and ReLU activation [23]
separately. For regularization, we employ Dropout operation [24] with dropout rate of 0.5 for each
layer. We set the mini-batch size as 50 and epoch number as 120, Adam [25] optimizer with a learning
rate 0.0002, clipnorm as 5. And we set the parameter β to 1.0 to control the strength of the cost
function for the VAD regression task.

We evaluate the experimental results of both single-task learning (STL) and multi-task learning
(MTL) architecture. In the single-task architecture, we build seperate systems for emotion classifi-
cation and VAD regression, whereas in multi-task architecture a join-model is learned for both of
these problems.

3.3 Experimental results and analysis

Comparison to state-of-the-art approaches: To quantitatively evaluate the performance of the
proposed model, we compare our method with currently advanced approaches. The following are
the commonly used benchmarks:

Tf-idf+Lexicon+DNN [9]: Introducing affective ANEW [19] lexicon and the term frequency-
inverse document frequency (tf-idf ) to construct the text features with DNN for emotion classifica-
tion on IEMOCAP.

CNN [26]: A efficient architecture which achieves excellent results on multiple benchmarks in-
cluding sentiment analysis.

LSTMs [27]: Two conventional stacked LSTM layers for emotion detection using the text tran-
scripts of IEMOCAP.

Deepmoji [11]: Using the millions of texts on social media with emojis to pre-train the model
to learn representations of emotional contents.

BiGRU+ATT [28]: A BiGRU network with the classical attention (ATT) mechanism.
BiLSTM+CNN [29]: Incorporating convolution with BiLSTM layer to sample more meaningful

information.
BERTBASE [5]: Bidirectional encoder with 12-layer Transformer blocks, which obtains new

state-of-the-art results on sentence-level sentiment analysis.
In order to evaluate the performance, we present accuracy and F1-score for emotion classification

task. As for VAD regression work, we use the mean squared error (MSE) and pearson correlation
coefficient (r) to evaluation the performance, in which the lower MSE value and higher r correlation,
the better performance. Experimental results of different methods in single task framework are shown
in Table 1 and Table 2.
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Table 1. F1, Accuracy for the comparative experiments in emotion classifiation framework.
Acc.=Accuracy(%), Average(w)=Weighted average(%). The best results are in bold.

ID Model
IEMOCAP

Happy Anger Neutral Sad Average(W)
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

1 Tf-idf+Lexicon+DNN [9] 63.80 69.29 68.24 67.64 60.68 58.84 62.86 57.69 63.89 63.39
2 CNN [26] 64.71 69.00 72.35 64.23 60.16 59.08 62.45 62.70 64.92 63.75
3 LSTMs [27] 60.41 69.08 71.18 66.30 61.72 59.18 68.98 62.25 65.57 64.20
4 Deepmoji [11] 58.37 66.15 61.18 63.03 72.14 61.56 63.67 66.10 63.84 64.21
5 BiGRU+ATT [28] 60.18 68.73 76.47 67.01 59.64 58.79 71.02 64.33 66.83 64.72
6 BiLSTM+CNN [29] 63.57 70.60 71.76 67.59 63.80 61.17 66.53 62.21 66.42 65.40
7 BERTBASE [5] 59.05 69.23 72.35 65.78 67.19 63.70 73.88 66.54 68.12 66.31

Proposed USE T+SSOA+CNN 69.91 72.88 71.18 70.14 67.71 65.74 72.24 71.08 70.26 69.96

Table 2. MSE and r for the comparative experiments in VAD regression framework

ID Model
IEMOCAP

Valence Arousal Dominance
MSE r MSE r MSE r

1 Tf-idf+Lexicon+DNN [9] 0.755 0.435 0.536 0.277 0.638 0.318
2 CNN [26] 0.731 0.471 0.544 0.345 0.619 0.359
3 LSTMs [27] 0.626 0.575 0.413 0.425 0.536 0.447
4 Deepmoji [11] 0.655 0.499 0.417 0.421 0.514 0.458
5 BiGRU+ATT [28] 0.674 0.478 0.439 0.378 0.561 0.416
6 BiLSTM+CNN [29] 0.685 0.466 0.433 0.400 0.531 0.442
7 BERTBASE [5] 0.566 0.587 0.416 0.464 0.564 0.460

Proposed USE T+SSOA+CNN 0.523 0.603 0.402 0.446 0.511 0.486

As shown in Table 1, our proposed model outperforms the state-of-the-art approaches with the
absolute increase of more than 3.65%, 2.14% on average weighted F1, accuracy in the emotion
classification task. As for VAD regression task, we can see from Table 2 that the proposed model
USE T+SSOA+CNN has better performance of consistently lower MAE and higher r. The results
of the comparative experiments demonstrate the effectiveness of our proposed model. In order to
illustrate the performance of our proposed SSOA mechanism and multi-task training, we do further
researches in the following part.

Validation studies of proposed model: We apply Universal Sentence Encoder which is trained
with Transformer [15] (USE T) to encode input texts into sentence embeddings and use CNN as the
feature extractor. Therefore USE T+CNN is the basic architecture and we control it as invarient.

USE T+ATT+CNN: In order to validate our proposed SSOA mechanism, we also consider the
most useful self-attention mechanism [16], which decide the importance of features for the prediction
task by weighing them when constructing the representation of text.

USE T+SSOA+CNN (STL): It is our work in single task framework, which uses SSOA
mechanism to compute attention scores between the label and the representations of the sentences
in the input that is to be classified. This can then be used to appropriately weight the contributions
of each sentence to the final representations.

USE T+SSOA+CNN (MTL): To demonstrates the effectiveness of incorporating VAD re-
gression with emotion classification, we experiment this model in the multi-task framework which
trained with both categorical emotion labels and dimensional valence, arousal, dominance labels.

From Table 3 and Table 4, some conclusions can be drawn as following: (1) Both USE T+ATT+CNN
with self-attention and USE T+SSOA+CNN with our SSOA have a better performance than with no
attention mechanism as expected. (2) Compared with USE T+ATT+CNN, our USE T+SSOA+CNN
model achieves a relatively better result, especially achieves improvement about 2.5% in Happy,
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Table 3. Results (%) of Validation studies on emotion classification task

Model
IEMOCAP

Happy Anger Neutral Sad Average(W)
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

USE T+CNN 60.63 69.61 70.59 67.61 73.44 66.04 69.80 67.99 68.61 67.81
USE T+ATT+CNN 69.00 70.77 68.82 68.82 69.01 65.11 66.12 69.53 68.24 68.56
USE T+SSOA+CNN (STL) 66.97 73.27 70.00 71.47 71.61 64.94 69.80 68.95 69.60 69.66
USE T+SSOA+CNN (SML) 69.91 72.88 71.18 70.14 67.71 65.74 72.24 71.08 70.26 69.96

Table 4. Results of validation studies on VAD regression task

Model
IEMOCAP

Valence Arousal Dominance
MSE r MSE r MSE r

USE T+CNN 0.595 0.570 0.431 0.418 0.563 0.464
USE T+ATT+CNN 0.571 0.582 0.463 0.415 0.554 0.459
USE T+SSOA+CNN(STL) 0.546 0.591 0.405 0.441 0.526 0.470
USE T+SSOA+CNN(MTL) 0.523 0.603 0.402 0.446 0.511 0.486

2.65% in Anger on F1-score, and have accuracy improvement about 2.6% in Neutral, 3.68% in Sad
separately. The results demonstrate that semantics of emotion labels can guide a model’s attention
when representing the input conversation and our proposed SSOA mechanism is able to capture
sentiment-aware features, meanwhile, self-attention mechanism usually weights features based on
semantic and context information which is not effective enough for emotion recognition. (3) Com-
paratively, as is shown in the last row, when both the problems are learned and evaluated in a
multi-task learning framework, we observe performance enhancement for both tasks as well, which
illustrates the effectiveness of multitask framework. And as we assume there are two reasons that
VAD regression and emotion classification can assist each other task. On the one hand, emotions are
high correlated with valence-arousal-dominance space. On the other hand, we take emotion labels
into attention computing, which can help to capture more valence and arousal features.

(a) (b) (c) (d)

Fig. 2. t-SNE visualization of validation studies on emotion classification. (a):USE T+CNN,
(b):USE T+ATT+CNN, (c):USE T+SSOA+CNN(STL) (d):USE T+SSOA+CNN(MTL)

Furthermore, in order to validate the effectiveness of our proposed method on different emotions,
we introduce the t-Distributed Stochastic Neighbor Embedding (t-SNE) [30] for visualizing the deep
representations as shown in Figure 2. We can see that compared with Figure 2 (a), the points
which represent Anger in Figure 2 (b) can be distinguished more easily. The points which represent
Happy and Sad have similar performance. Compared with Figure 2 (b), all the four emotion points
have better discrimination in Figure 2(c) which means the deep representations extracted by our
model are more sentiment-aware. However, we can observe from Figure 2(c) that most confusions
are concentrated between Anger, Sad with Neutral. We assume the reason is that Anger and Sad
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hold the lowest percentage in IEMOCAP, which would not trained enough in our SSOA training
process. Besides, the dataset we use is multimodal, a few utterances such as ”Yeah”, ”l know”
carrying non-neutral emotions were misclassified as we do not utilize audio and visual modality in
our experiments. In Figure 2(d), Sad can be distinguished better, we assume it’s because Sad is one
kind of negative valence and arousal values emotion according to Valence-Arousal representation [18],
whose prediction would be more easy with the help of VAD.

Overall, the proposed USE T+SSOA+CNN with multi-task learning model outperforms the
other comparative and ablation studies. It is reasonable to assume that the proposed model is good
at capturing both semantic and emotion features not only in emotion classification but also the VAD
regression task.

4 Conclusion

In this paper, we proposed a sentiment similarity-oriented attention mechanism, which can be used
to guide the network to extract emotion-related information from input sentences to improve classi-
fication and regression accuracy. In addition, to extract more robust features, we jointed dimensional
emotion recognition using multi-task learning. The effectiveness of our proposed method has been
verified under a series of comparative experiments and validation studies on IEMOCAP. The results
show that the proposed method outperforms previous text-based emotion recognition by 6.57% from
63.39% to 69.96%, and show better robustness. In the future work, we will make improvements of
the proposed model by introducing speech information into SSOA computation.
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