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ABSTRACT
Due to the more robust characteristics compared to unimodal, audio-
video multimodal emotion recognition (MER) has attracted a lot of
attention. The efficiency of representation fusion algorithm often
determines the performance of MER. Although there are many fu-
sion algorithms, information redundancy and information comple-
mentarity are usually ignored. In this paper, we propose a novel rep-
resentation fusion method, Capsule Graph Convolutional Network
(CapsGCN). Firstly, after unimodal representation learning, the ex-
tracted audio and video representations are distilled by capsule net-
work and encapsulated into multimodal capsules respectively. Mul-
timodal capsules can effectively reduce data redundancy by the dy-
namic routing algorithm. Secondly, the multimodal capsules with
their inter-relations and intra-relations are treated as a graph struc-
ture. The graph structure is learned by Graph Convolutional Net-
work (GCN) to get hidden representation which is a good supple-
ment for information complementarity. Finally, the multimodal cap-
sules and hidden relational representation learned by CapsGCN are
fed to multihead self-attention to balance the contributions of source
representation and relational representation. To verify the perfor-
mance, visualization of representation, the results of commonly used
fusion methods, and ablation studies of the proposed CapsGCN are
provided. Our proposed fusion method achieves 80.83% accuracy
and 80.23% F1 score on eNTERFACE05’.

Index Terms— multimodal emotion recognition, capsule net-
works, graph convolutional, VGG-16

1. INTRODUCTION

Emotional expression plays a vital role in interpersonal communica-
tion [1], and successfully detecting the emotional states has practical
importance for artificial intelligence (AI). Emotion recognition has
considerable prospects in sociable robotics, medical treatment, edu-
cation quality evaluation, and many other human-computer interac-
tion systems [2]. Especially current COVID situation, the mentioned
products are more meaningful.

Humans express emotions in various ways, such as speech [3, 4],
body gestures [5], facial expressions [6], and text [7]. The unimodal
signal cannot fully convey the true intention. Different modality
describes different aspects of the same emotion. Therefore, multi-
modal signals are more robust and more in line with human expres-
sion habits. In this work, we research on audio and video modalities
which are the most common and effective ways for humans.

* CORRESPONDING AUTHOR

The key to the success of multimodal emotion recognition is the
fusion of multimodal information. Information fusion methods are
mainly divided into two categories [8]. One is early fusion (feature-
level fusion). The source signals, or the extracted representations are
concatenated as the fusion representations at the early stage. Tripathi
et al. [9] used Bidirectional Long Short Term Memory (BLSTM)
to extract the features and directly merged the extracted representa-
tions. Although early fusion methods have low computational com-
plexity, the existence of redundancy reduces the effectiveness of in-
formation. The other type of fusion is late fusion (score-level fusion)
[10, 11]. The extracted representations or unimodal results are fused
at the late stage. Zhang et al. [12] introduced Deep Belief Networks
(DBN) to fuse the audio and video representations before the clas-
sifier. Atmaja et al. [13] used support vector regression (SVR) to
combine early and late fusion results which was one kind of multi-
step score-level fusion. The disadvantage of late fusion is lacking
representation complementarity between two modalities. One hy-
brid fusion method can be called model-level fusion which benefits
from the powerful model to improve the performance. Huang et
al. [14] introduced Transformer to fuse the audio and video rep-
resentations. However, current fusion methods usually ignored the
redundancy and complementarity of information between different
modalities.

Capsule network (CapsNet) was proposed by Sabour et al. [15]
which was quickly introduced to various research fields [16, 17, 18].
Under the premise of ensuring that information was not lost, Cap-
sNet used a routing algorithm to distill the information into ’cap-
sule’. Graph Convolutional Network (GCN) [19] was introduced
to model the relational data and achieved good results in the field
of Natural Language Processing (NLP) [20, 21, 22]. To reduce re-
dundancy and enhance complementarity, we propose a novel fu-
sion method, Capsule Graph Convolutional Network (CapsGCN) as
shown in Fig. 2. Firstly, the CapsNet is introduced to encapsulate
the audio and video representation into capsules respectively. The re-
dundancy of the information in capsules is reduced by dynamic rout-
ing. Secondly, the extracted audio-video capsules with their inter and
intra relations compose a relational graph. Then, GCN is introduced
to learn hidden representations between audio-video capsules. The
hidden representations are a good supplement for inforamtion com-
plementarity. Finally, the audio-video capsules, and learned hidden
representations are feed to the multihead self-attention [23].

The major contributions of this paper are summarized as: 1) A
CapsGCN that considering multimodal information redundancy and
information complementarity is proposed. 2) Attention mechanism
is introduced to balance the contributions of different representations
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and futher reduce redundancy.

2. MULTIMODAL EMOTION REPRESENTATION FUSION
WITH CAPSGCN

2.1. Multimodal emotion recognition system

The proposed system as shown in Fig. 1 mainly consists of two
parts, which are unimodal representation learning and multimodal
representation fusion. The representation Ra and Rv are learned by
two streams of the first part of the system. The multimodal repre-
sentation fusion part is the proposed CapsGCN integrating attention,
and the details are shown in Fig. 2. The learned fusion representa-
tion R̂f is followed by a Flatten layer and a fully connected layer.

Video Sequence (N*720*576*3)

Face Sequence (N*224*224*3)

Face detection and cutting Segmented speech signals

Spectrogram (N*M*62*201)

2D-CNN 
Encoder

mean-pooling

Pre-trained 
VGG-16
Eocoder

Utterance Audio representation

(N*60*1024)

Utterance Video representation

(N*16*1024)

CapsGCN

Flatten and Fully connected Layers

Emotion Categories

Multihead Self-attention Layers

  

  

aR vR

ˆ
fR

Fusion 
Method

hR

Fig. 1. Multimodal emotion recognition system.

2.2. Unimodal representation learning

In this part, we use two streams to learn the unimodal representation.
We divide the video sequence into audio data and image data, and the
frame number is N . For audio data, the speech signals are divided
into M segments with a 40ms overlap. Then the speech signals are
transformed into spectrograms. We introduce common 2D-CNN to
learn the audio representation and finally get the audio representation
Ra (N ∗60∗1024). For image sequence, we use the OpenCV toolkit
to detect the face and crop the face images whose samples are shown
in Fig. 1. Due to data lacking consideration, at the video represen-
tation step, we introduce a pre-trained model VGG-16 [24] which is
trained by ImageNet. In each fine-tuning epoch, 16 face images are
randomly selected as the fine-tuning data. This training strategy is
to prevent the redundancy of adjacent face images. Finally, we get

the video representation Rv (N ∗ 16 ∗ 1024). The effectiveness of
the learned representation Ra and Rv is verified in the experiments
section.

2.3. CapsGCN based Representation Fusion

CapsNet outputs a vector instead of a single scalar value, which
makes it be able to learn more obvious and complicated information.
Dynamic routing method not only reduces information redundancy,
but also avoids losing useful emotion information.

The cij are coupling coefficients which are determined by a
“routing softmax” as shown in Eq. (1).

cij =
exp (dij)∑

k

exp (dik)
(1)

where the logits dij are the log prior probabilities that capsule i is
coupled to capsule j

ûj|i =Wijui (2)

sj =
∑
i

cij ûj|i (3)

In Eq.(4), vj is the vector output of capsule j in layer l and sj is
its total input.

vj =
||sj ||2

1 + ||sj ||2
sj
||sj ||

(4)

We use the CapsNet to model the representationRa andRv , and
get audio digitcap Da and Dv:

Da = [va0 , v
a
1 , ..., v

a
k−1, v

a
k ]

Dv = [vv0 , v
v
1 , ..., v

v
k−1, v

v
k ]

(5)

In Eq. (5), under the consideration of six emotion categories, we
set k = 6 to capture simple and obvious information. The input data
of the GCN is multimodal capsules Rav :

Rav = [va0 , v
a
1 , ..., v

a
k−1, v

a
k , v

v
0 , v

v
1 , ..., v

v
k−1, v

v
k ] vi ∈ ν (6)

In Eq.(6), vi represents the node, and the directed graph G = (ν, ε)
and the edge is (vi, r, vj) ∈ ε. The hidden state in t-th layer:

h
(t)
i = σ

(
GT

i (h
(t−1)
i W + b)∑

Gi

)
(7)

σ() is an element-wise activation function, we use ReLU() in this
paper. W is the weight matrix and b is the bias. Finally we get the
hidden representation Rh.

2.4. Attention Mechanism and Emotion Classification

In multimodal representation, the original independence of audio
and video modal is also important. After the proposed CapsGCN,
we concatenate Rav and Rh as fusion representation Rf . The fu-
sion representation Rf is followed by multihead self-attention.

Att (Q,K, V ) = softmax

(
QKT

√
DK

)
V (8)

In Eq. (8), the input matrix consists of Q,K, V which represents
queries, keys, values respectively and the dimension of keys is DK .
Instead of performing a single calculation ofQ,K, V , it is beneficial
to linearly project the queries, keys, and values, h times with differ-
ent learned linear projections. The h results are concatenated and
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Fig. 2. The proposed model Capsule Graph Convolutional Network (CapsGCN) with Multihead Self-attention

once projected, resulting in the final output Mh (Q,K, V ) as shown
in Eq. (9).

Mh (Q,K, V ) =W (Att1 + ...+Atth) (9)

in Eq. (9) Q == K == V == Rf . The Rf is calculated h times
without sharing parameters and the h results are projected to R̂f as
shown in Eq. (10).

R̂f =Mh (Rf ) (10)

A balance on the source representation and hidden representa-
tion can be found by this attention mechanism to prevent individual
emotions from being too prominent and further reduce redundancy.

3. EXPERIMENTS

3.1. Experiments Setup

3.1.1. Datasets

All experiments in this paper are conducted on eENTERFACE05’
[25], which is an audio-visual database in English. This database
contains six archetypal emotion categories, i.e., Anger, Disgust,
Fear, Happiness, Sadness, and Surprise which is recorded by 42
subjects, coming from 14 different nationalities. Each of the sub-
jects was told to listen to six successive short emotion-related stories.
Only those subjects whose verbal and video reactions to each of the
situations, as judged by two experts that the emotion was expressed
in an unambiguous way, are included in the database. The audio
data is recorded at 48kHz. The video data are processed using a
720x576 AVI format, and 25 frames per second.

3.1.2. Audio and Video data Preprocessing

The audio data is divided into equal-length segments with an overlap
of 40ms, and each segment is converted into a 62 × 201 spectro-
gram. Because multiple segments can be generated from each audio
sample, which will enlarge the training data. We use the OpenCV
toolkit to do face detection and cutting jobs and obtain 224 × 224
face sequences.

3.1.3. Audio and Video representation learning

We use a commonly used 2D-CNN [26] as an audio representation
learning method, and use the following mean-pooling layer to get the

representation of each utterance. For video representation learning,
we introduce pre-trained VGG-16 which is trained by ImageNet. We
also set up two layers to follow the VGG-16 model. The video data
fine-tunes the VGG model, and extracts the video representations.
All experiments are conducted on speaker independent scheme.

3.2. Experimental Results and Analysis

To verify the effectiveness of the extracted audio and video repre-
sentation and the proposed fusion method, we set up two groups of
experiments to confirm the validity. The purposes of setting up the
first group of experiments are that, one is to verify the effectiveness
of preprocessing and representation learning, the other is to show
the characteristics of unimodal information. The second group is to
show the details of the proposed fusion method.

3.2.1. Effectiveness of Audio and Video representation

To observe the extracted audio and video representations, t-distributed
stochastic neighbor embedding (t-SNE) [27] is introduced to visual-
ize the six emotional categories as shown in Fig. 3.
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(a) Audio representation
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(b) Video representation

Fig. 3. The t-SNE visualizations of unimodal representations.

We can find the intra relations in these two distributions are
different. For example, in audio distribution there are a lot of points
confusing together in the center, and in video distribution, Fear
(green points) is very close to Suprise (purple points).

To verify the quantitative classification performance, we intro-
duce DBN [12] and BLSTM [9] as the state-of-the-art comparative
experiments. In these two comparative experiments, the DNB is in-
troduced in score-level fusion manner, and BLSTM is in feature-
level fusion manner. The experimental results of unimodal and mul-
timodal experiments are shown in Table 1:

The visualizations and experimental results in Fig. 3 and Ta-
ble 1 verify the effectiveness of the representation we extracted by
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Table 1. Unimodal and multimodal experimental accuracy.

Representation DBN [12](%) BLSTM [9](%)

Audio 63.75 66.67
Video 57.08 58.33
Audio-Video 69.17 71.67

2D-CNN and pre-trained VGG-16. Furthermore, the fusion of au-
dio and video representation could bring improvements whether it
is a score-level fusion or a feature-level fusion. Although represen-
tations have been proven effective, these two state-of-the-art fusion
methods do not bring good improvements. The performance of com-
parison algorithms Comparison algorithms are restrited by ignoring
the importance of information redundancy and information comple-
mentarity.

3.2.2. Validation of the proposed fusion method

The following four t-SNE visualizations in Fig. 4 are the audio-
video representation after (a)CapsNet, (b)GCN, (c)CapsGCN, and
(d)CapsGCN integrating attention.
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(d) CapsGCN att

Fig. 4. The t-SNE visualizations of four fusion methods.

The distributions in (c)CaspGCN and (d)CapsGCN att are
clearer. To quantitatively analyze the proposed fusion methods,
we provide the results of the ablation studies in Table 2, and the
evaluation criteria are F1-score and accuracy. At the same time, four
confusion matrices of the ablation studies are shown in Fig. 5.

Table 2. Ablation studies of proposed model.

Accuracy(%) F1(%) CapsNet GCN Attention

72.92 71.94 X
67.08 63.67 X
78.33 77.04 X X
80.83 80.23 X X X

Observing Table 2 and Fig. 5, three phenomena can be found.
The first one is that CapsNet performs better than GCN. This phe-
nomenon reflects that the source audio and video representations
have high redundancy. The calculation of inter and intra relations
becomes complicated without reducing redundancy. The comple-
mentarity of source audio and video representation can not be well
expressed. The second phenomenon is that the accuracy of Caps-
GCN gets a great improvement. This situation fully reflects the com-
plementarity of multimodal capsules is well released. At the same
time, the calculation of inter and intra relations affects the sensitivity
to some emotions, such as Fear. The third phenomenon is Caps-
GCN att achieves the best performance. The introduced attention
mechanism alleviates the excessive influence of certain factors on
fusion such as Fear, and Surprise which are recognized as the most
difficult. Also, due to the addition of the attention weights, the re-
dundancy is further reduced.
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Fig. 5. The confusion matrices.

4. CONCLUSION

In this paper, we studied the importance of information redundancy
and information complementarity in multimodal fusion methods
for MER. The effectiveness of the proposed fusion method Caps-
GCN has been verified under comparative experiments and ablation
studies on eNTERFACE05’. Compared with the traditional fusion
method, the classification accuracies achieve 80.83% with absolute
increments more than 11.66% and 9.16%. The proposed method
shows high sensitivity to all six emotions, especially for Fear, Hap-
piness, and Suprise. The proposed fusion method also shows great
potential to learn and model textual information. In the future, we
plan to investigate the performance of the proposed model on some
other multimodal datasets.
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