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It was an inspiring tijip.
What’s empathy?

Empathy is a desirable capacity of humans to place sl
themselves in another's position to show @ NS )
understanding of his/her experience and feelings. Figure 1: Empathetic dialogue system by mutli-

modality avatar Genel'!

Why empathy?

An empathetic dialogue system can serve as chit-chat
friends for companion, psychologists for health care,
etc.

Figure 2: Nora, the empathetic psychologist!?]
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Research Background

How to express empathy?
Empathy includes two aspects: Cognition and Affectionl®!,

. understand the other person’s perspective and situation.
. express suitable emotion

| lost my job last year and got

really angry.
| am sorry to hear that;

Did it happen out of the blue?

User W

)

Responder
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Research Background

How to generate empathetic response?

A case with no causality explanation, generating an empathetic response based
on context information.

| lost my job last year and got
really angry.

=

| am sorry to hear that;
A lost job is bad.

User T 9
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Research Background

A case with causality explanation, generating an empathetic response based on
knowledge reasoning.

| lost my job last year and got —;L / )
really angry. 4/ o ° \
[

e oo

User .
That’s upsetting.
Have you found a new job? ) w @ @
\ Q
¢S
AL
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Related Work

[Sabour et al AAAI 2022] used a knowledge model COMET to obtain the user’s react and situation
for affective and cognitive encoding.

Emotion
- Classification
Context Affectlon-Reﬁned
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Weakness: concatenated related knowledges, no reasoning process.
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Related Work

[Wang et al EMNLP 2022] used cause-effect graph to build the causality interdependence
between user’'s emotion to user’s context, and user’'s emotion to system’s response.
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Cause-effect graph

dererormrodme used only for training

data or module used for both training and inference

Weakness: It only reasoned casualties to the user’s emotion, did not reason more fine-grained
user’'s want and system’s intent.
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Motivation

| lost my job last year and got

Exploring user’s perspective: really angry.

angry %y

to get a new job.

User

| am sorry to hear that
| wish can give you a new job!

System'’s intention is aligned

with user’s desire: 7
Q

sad
to give a new job. ‘t"?c?
AL
D)
System
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Motivation

| lost my job last year and got

: : really angry.
Reasoning user’s perspective: y angry

angry %y

want to complain.

User

| am sorry to hear that
Did it happen out of the blue?

Reasoning responder’s

perspective to mimic humans: 7
sad
to know what happened.

)

Responder
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Proposed Method

\ 4
\ 4

context c T5 Encoder, Context

. ) .
Emotion Classifier Emotion e

35 r )
<xWant> .
user T5 Encoder ., Causalityser
<xReact> g, L )
Generated
T5 Decoder response 7

. . <xIntent> .
[(;::;z::v Reaoning ]_, <XReact>, TS Encoders Causalitysys

A 4

\ 4

T5-based Response Generation

» For the context c, using COMET to predict user’s want/react, and causality resoning
module to predict system’s intent/react.

<« Itis a BART-based model which is fine-tuned on the cause-effect graph from
W ATOMIC-2020 dataset.
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Proposed Method

context ¢ User causality | <xWant>, Causality Reasoning Module
COMET Inferring <xReact> .,

<xIntent>
<xReact>

response
TChatGPT

Enhanced ChatGPT-based Response Generation

Input: context c; user’s want/react, outputs of in-context reasoning process

Output: system’s intention and reaction; response
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Proposed Method

context c User causality | <XWant>,, Causality Reasoning Module
GobilEr Inferring <xReact> s,

<xIntent>
<xReact>
)
— | In-context example _
—— | selection
response
Training Set TChatGPT

Enhanced ChatGPT-based Response Generation

» Select top-k conversations from training set based on cosine similariy as the in-context
example.
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context c omET User causality <xWant>,,, Causality Reasoning Module
Inferring <xReact> g,

<xIntent>
<xReact>

Few-shot examples construction

' >
—— | In-context example contextyer <xWant> .11, <XReact>,cer1
—— | selection responsesq; <xIntent>,;, <xReact>;

Training Set examples example causality TChatGPT

response

Enhanced ChatGPT-based Response Generation

» For the <context, reasponse> in each selected example, predict user’'s want/react and
system’s intention/reaction as the example causality.
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In-context reasoning

Test input  user: I’m so excited because I’'m finally going to visit my parents next month! I didn’t see them for 3 years.

Predictions user wants: to spend time with family; to have fun with them; to see them again.
user reacts to: excited; happy; nostalgic; anxious; joyful.
userl: Someone is visiting me soon and I can’t wait!
contextl  sysl: Whois it?
userl: My mom, she is amazing.

User causality referring

Few-shot1 userl wants: to have a good time; to talk to their mom; to have fun with Mom.
example  userl reacts to: excited; happy; satisfied; good; loved.
causality  sysl’s intent: to be with her; to be loved; to be nice; happy.
sysl reacts to: happy; excited; proud; good; loving.

In-context reasoning

. 1c! ’ |
responsel sysl: I bet she is! I am so glad you get to see her. Mom’s are awesome! process

user2: My family is coming to visit!
context2  sys2: Awesome. When are they coming and for how long?
user2: They are coming next year from Africa!

Few-shot2 user2 wants: to have a good time; to go to the airport; to have fun with the family.
example  user2 reacts to: happy; excited; happy; excited; loved.
causality  sys2’s intent: to see the sights; to be with family; to be with them; to have fun.
sys2 reacts to: happy; excited; satisfied; tired; relieved.

response2 sys2: That’s a long trip. I hope they have a good time.

SYS'S intent: to be SUPpOrtive, to be nappy for them; to ask about the Visit.
Reasoning  sys reacts to: happy; excited; curious; supportive; interested. Resoned results

response: That’s great news! I’m so happy for you. What are you planning to do when you visit them?
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Experiment: Dataset
. EmpatheticDialogue [0]
25k empathetic conversations with 32 emotion labels.

The ratio for training/validation/test is 8:1:1.

KYOTO UNIVERSITY [6] Rashkin, Hannah, et al. "Towards empathetic open-domain conversation models: A new benchmark and dataset." arXiv 15
preprint arXiv:1811.00207 (2018).




Experiment: Number of few-shots

EMOACC [P EX ER

k=2 0.24 0.08 0.57 1.10
k=3 0.25 0.09 048 1.05
k=4 0.27 0.09 040 1.04
k=5 0.25 0.10 0.33 1.00
k=6 0.25 0.08 0.32 1.0l

« EMOACC = Emotion accuracy, measured by a fine-tuned BERT-base model on the
EmpatheticDialogue dataset.

« |P, EX, ER is measured by separately fine-tune pre-trained empathy identification models
for each metricl’l.

* |P = Interpretation

« EX= Exploration

ER= Emotion reaction

KYOTO UNIVERSITY [7] https://github.com/behavioral-data/Empathy-Mental-Health 16




Experiment: Results on ChatGPT

Results of automatic evaluations for single-turn.

Method Empathy Coherence
EMOACC  ER IP EX | PBERT RBERT FBERT
_, ChatGPT 0.060 0.923| |0.073 0341 | 0877 0.872 0.875
~”  ChatGPT+Causalityyser sys 0.280 1.116| (0.104 0.768 | 0.886  0.878  0.882

Results of automatic evaluations for multi-turn.

Method Empathy Coherence
EMOACC ER IP EX | PBERT RBERT FBERT
_, ChatGPT 0.083 0.917| |0.065 0.318 | 0.891 0.902  0.894
~~  ChatGPT+Causalityyser sys 0.199 1.094| (0.058 0.397 | 0.899  0.907 0.901

Emotion expression Cognition

» Compared with ChatGPT, ChatGPT with causality explanation can generate
response with appropriate emotion and contents.
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Experiment: Results on ChatGPT

Results of human A/B test evaluations.
Emp., Coh., Inf. refer to Empathy, Coherence, and Informativeness

Comparisons Aspects Win Loss Tie

Emp. 50.7 36.0 13.3
Coh. 4277 420 153
Inf. 513 373 11.3

ChatGPT+Causality sy sys
vs. ChatGPT (k=2)
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Experiment: Results on TS

Results of automatic evaluations

Methods PPL | BLEU-2 BLEU-3 BLEU4 DI D2 PBERT RBERT FBERT
MOEL 37.63 8.63 4.25 243 038 1.74  86.19 85.67 85.91
MIME 36.84 8.37 4.31 2:51 0.28 095  86.27 85.59 85.92
Baselines EmpDG 38.08 7.74 4.09 2.49 046 190  86.09 85.49 85.78
CEM 36.36 6.35 3.55 2.26 054 238  86.61 85.39 85.98
LEMPEx 30.42 2.1 0.8 0.35 1.02 10.81 83.60 83.09 83.34
T5 46.13 3.59 1.94 1.15 049 282  86.69 84.07 85.35
Ours T5+Causality, s, 15.26 4.84 1.97 0.89 1.08 10.75 90.16 89.48 89.80

T5+Causality,ser ys  13.07  10.53 6.34 406 075 552 92.24 90.76 91.48
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Experiment: Results on TS

Results of human A/B test evaluations.
Emp., Coh., Inf. refer to Empathy, Coherence, and Informativeness

Comparisons Aspects Win Loss Tie

Emp. 42.0 400 18.0

To+Causalityuser,sys  op 387 333 28.0

v6. CEM Inf. 383 443 173
. Emp. 53.0 350 120

T5+Causalityyser, sys

oo L EMPES Coh. 39.0 333 27.7

Inf. 50.0 38.0 12.0
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Comparation between ChatGPT and T5

Model Empathy Diversity BLEU

EMOACC| IP EX ER ‘ Dl D2 | BLEU-2 BLEU-3 BLEU-4
T5+Causalityyser sys 0.125 0.271 10.498 0.751 | 0.75 5.52 10.53 6.34 4.06
ChatGPT+Causality,ser sys 0.235 0.046 10.668 1.109 | 2.91 16.44 3.95 211 152

/

« Stronger interpretation (IP), which involves understanding and empathizing
through shared experiences is more frequently observed in the trained T5
model, while ChatGPT tends to respond from the view of a machine.

* Indicating a potential need of balancing the response diversity and the
accuracy in generating empathetic response.
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Case studies

user: I’m so sad because I've read an article about a newborn girl who died

Coslent because her parents didn’t believe in medication and doctors.
MOEL sys: I am so sorry to hear that. I hope you are able to find her.
MIME sys: That is sad. I am sorry to hear that.
Bagrsss EmpDG sys: I am sorry to hear that. I hope you find out of it.
CEM sys: Oh no, I am so sorry to hear that.
LEMPEXx sys: I'm sorry to hear that. I’'m so sorry to hear that.
ChatGPT S)js:.That S heartbreaklng.. '
It’s important to trust medical professionals and seek help when needed.
; user wants:|to tell their friends;|to cry; to find out what happened.
Causality,,ser
user reacts to: sad; sorrowful; depressed; upset.
. sys’s intent: [to comfort user; to show empathy; to be supportive
Causality . .
Ours sys reacts to: sad; upset; empathetic; sympathetic; concerned.

TS5+Causalityyser,sys sys: [l know what you mean, I would have been so mad!
sys: That’s really heartbreaking.
I’m here for you if you need to talk or just need someone to listen.

ChatGPT+Causality,,ser, sys
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Conclusion

** A commonsense-based causality explanation approach that reasons not only the user's
desires/reaction but also the system's proper intention/reaction.

¢ Integration of T5 with ChatGPT's reasoning capability realizes more empathetic
responses that result in better evaluations.

** They are more accurate and empathetic than the responses by ChatGPT
while not so diverse.
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Thanks for you attention!
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Q&A
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