Reasoning before Responding: Integrating Commonsense-based Causality Explanation for Empathetic Response Generation

Yahui Fu, Koji Inoue, Chenhui Chu, Tatsuya Kawahara

KYOTO UNIVERSITY

KVOTO MARKY

SIGDIAL 2023, Prague, Czechia

What's empathy?

Empathy is a desirable capacity of humans to place themselves in another's position to **show understanding** of his/her **experience and feelings**.

Why empathy?

An empathetic dialogue system can serve as chit-chat friends for *companion*, psychologists for *health care*, etc.

Figure 1: Empathetic dialogue system by mutlimodality avatar Gene^[1]

Figure 2: Nora, the empathetic psychologist^[2]

 KYOTO UNIVERSITY
 [1] Fu, Y et al, T. Improving Empathetic Response Generation with Retrieval based on Emotion Recognition. IWSDS 2023
 2

 [2] Winata, Genta Indra, et al. "Nora the Empathetic Psychologist." INTERSPEECH. 2017.

How to express empathy?

Empathy includes two aspects: Cognition and Affection^[3].

- Cognition: understand the other person's perspective and situation.
- Affection: express suitable emotion

	I lost my job last year and really angry.	got	
User		I am s Did it	sorry to hear that; (Affection) happen out of the blue? (Cognition)

KYOTO UNIVERSITY [3] Mark H Davis. 1983. Measuring individual differences in empathy: evidence for a multidimensional approach. Journal of 3 personality and social psychology, 44(1):113.

How to generate empathetic response?

A case with no causality explanation, generating an empathetic response based on context information.

A case with causality explanation, generating an empathetic response based on knowledge reasoning.

京都大学

Related Work

[Sabour et al AAAI 2022] used a knowledge model COMET to obtain the user's *react and situation* for *affective and cognitive* encoding.

Weakness: concatenated related knowledges, no reasoning process.

 KYOTO UNIVERSITY
 [4] Sabour, Sahand, Chujie Zheng, and Minlie Huang. "Cem: Commonsense-aware empathetic response generation."

 Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36. No. 10. 2022.

⁶ 6

Related Work

[Wang et al EMNLP 2022] used *cause-effect graph* to build the causality interdependence between user's emotion to user's context, and user's emotion to system's response.

Weakness: It only reasoned casualties to the user's emotion, did not reason more fine-grained user's want and system's intent.

KYOTO UNIVERSITY [5] Wang, Jiashuo, Yi Cheng, and Wenjie Li. "CARE: Causality Reasoning for Empathetic Responses by Conditional Graph 7 Generation" EMNLP 2022 findings.

Motivation

Exploring user's perspective:

Affection: angry Desire: to get a new job. I lost my job last year and got really angry.

I am sorry to hear that (Affection); wish can give you a new job!

System's intention is aligned with user's desire: Affection: sad Intention: to give a new job.

(Cognition) System

京都大学

Motivation

Reasoning user's perspective: Affection: angry

Desire: want to complain.

I lost my job last year and got really angry.

Responder

I am sorry to hear that (Affection); Did it happen out of the blue? (Cognition)

Reasoning responder's perspective to mimic humans: Affection: sad Intention: to know what happened.

京都大学

For the context c, using COMET to predict user's want/react, and causality resoning module to predict system's intent/react.

It is a BART-based model which is fine-tuned on the *cause-effect* graph from ATOMIC-2020 dataset.

Input: context c; user's want/react, outputs of in-context reasoning process

Output: system's intention and reaction; response

Select top-k conversations from training set based on cosine similariy as the in-context example.

For the <context, reasponse> in each selected example, predict user's want/react and system's intention/reaction as the example causality.

In-context reasoning

Test input	user: I'm so excited because I'm finally going to visit my parents next month! I didn't see them for 3 years.						
Predictions	user wants: user reacts	user wants: to spend time with family; to have fun with them; to see them again. User reacts to: excited; happy; nostalgic; anxious; joyful.					
	context1	user1: Someone is visiting me soon and I can't wait! sys1: Who is it? user1: My mom, she is amazing.					
Few-shot1	example causality	user1 wants: to have a good time; to talk to their mom; to have fun with Mom. user1 reacts to: excited; happy; satisfied; good; loved. sys1's intent: to be with her; to be loved; to be nice; happy. sys1 reacts to: happy; excited; proud; good; loving.					
	response1	sys1: I bet she is! I am so glad you get to see her. Mom's are awesome!	process				
	context2	user2: My family is coming to visit! sys2: Awesome. When are they coming and for how long? user2: They are coming next year from Africa!	,				
Few-shot2	example causality	user2 wants: to have a good time; to go to the airport; to have fun with the family. user2 reacts to: happy; excited; happy; excited; loved. sys2's intent: to see the sights; to be with family; to be with them; to have fun. sys2 reacts to: happy; excited; satisfied; tired; relieved.					
	response2	sys2: That's a long trip. I hope they have a good time.					
Reasoning	sys's intent: to be supportive; to be happy for them; to ask about the visit. sys reacts to: happy; excited; curious; supportive; interested. response: That's great news! I'm so happy for you. What are you planning to do when you visit them?						

Experiment: Dataset

Dataset: EmpatheticDialogue [6]

25k empathetic conversations with 32 emotion labels.

The ratio for training/validation/test is 8:1:1.

KYOTO UNIVERSITY [6] Rashkin, Hannah, et al. "Towards empathetic open-domain conversation models: A new benchmark and dataset." arXiv 15 preprint arXiv:1811.00207 (2018).

Experiment: Number of few-shots

	EMOACC	IP	EX	ER	
<i>k</i> =2	0.24	0.08	0.57	1.10	
<i>k</i> =3	0.25	0.09	0.48	1.05	
<i>k</i> =4	0.27	0.09	0.40	1.04	
<i>k</i> =5	0.25	0.10	0.33	1.00	
<i>k</i> =6	0.25	0.08	0.32	1.01	

- EMOACC = Emotion accuracy, measured by a fine-tuned BERT-base model on the EmpatheticDialogue dataset.
- IP, EX, ER is measured by separately fine-tune pre-trained empathy identification models for each metric^[7].
- IP = Interpretation
- EX= Exploration
- ER= Emotion reaction

KYOTO UNIVERSITY [7] https://github.com/behavioral-data/Empathy-Mental-Health

Experiment: Results on ChatGPT

Results of automatic evaluations for single-turn.

Method			Empat	thy	у	Coherence			
		EMOACC	ER		IP	EX	PBERT	RBERT	FBERT
k=2	ChatGPT	0.060	0.923		0.073	0.341	0.877	0.872	0.875
	ChatGPT+Causality $user, sys$	0.280	1.116		0.104	0.768	0.886	0.878	0.882

Results of automatic evaluations for multi-turn.

Method			Empat	h	у	Coherence			
		EMOACC	ER		IP	EX	PBERT	RBERT	FBERT
1-2	ChatGPT	0.083	0.917	Τ	0.065	0.318	0.891	0.902	0.894
K=2	ChatGPT+Causality $user, sys$	0.199	1.094		0.058	0.397	0.899	0.907	0.901

Emotion expression

Cognition

Compared with ChatGPT, ChatGPT with causality explanation can generate response with appropriate emotion and contents.

Experiment: Results on ChatGPT

Results of *human A/B test* evaluations.

Emp., Coh., Inf. refer to *Empathy*, *Coherence*, and *Informativeness*

Comparisons	Aspects	Win	Loss	Tie
ChotCDT Consolity	Emp.	50.7	36.0	13.3
ChatCPT ($l_{z}=2$)	Coh.	42.7	42.0	15.3
vs. ChatGP1 ($k=2$)	Inf.	51.3	37.3	11.3

Experiment: Results on T5

	Methods	$\operatorname{PPL} \downarrow$	BLEU-2	BLEU-3	BLEU-4	D1	D2	PBERT	RBERT	FBERT
	MOEL	37.63	8.63	4.25	2.43	0.38	1.74	86.19	85.67	85.91
Baselines	MIME	36.84	8.37	4.31	2.51	0.28	0.95	86.27	85.59	85.92
	EmpDG	38.08	7.74	4.09	2.49	0.46	1.90	86.09	85.49	85.78
	CEM	36.36	6.35	3.55	2.26	0.54	2.38	86.61	85.39	85.98
	LEMPEx	30.42	2.1	0.8	0.35	1.02	10.81	83.60	83.09	83.34
	T5	46.13	3.59	1.94	1.15	0.49	2.82	86.69	84.07	85.35
Ours	T5+Causality _{user}	15.26	4.84	1.97	0.89	1.08	10.75	90.16	89.48	89.80
	T5+Causality $user, sys$	13.07	10.53	6.34	4.06	0.75	5.52	92.24	90.76	91.48

Results of automatic evaluations

Experiment: Results on T5

Results of *human A/B test* evaluations.

Emp., Coh., Inf. refer to *Empathy*, *Coherence*, and *Informativeness*

Comparisons	Aspects	Win	Loss	Tie
T5+Causality	Emp.	42.0	40.0	18.0
I 5+Causanty user, sys	Coh.	38.7	33.3	28.0
	Inf.	38.3	44.3	17.3
T5 Cousolity	Emp.	53.0	35.0	12.0
15+Causanty _{user,sys}	Coh.	39.0	33.3	27.7
VS. LEIVIPEX	Inf.	50.0	38.0	12.0

Comparation between ChatGPT and T5

Model	Empathy				Div	ersity	BLEU		
	EMOACC	IP	EX	ER	D1	D2	BLEU-2	BLEU-3	BLEU-4
T5+Causality $user,sys$	0.125	0.271	0.498	0.751	0.75	5.52	10.53	6.34	4.06
ChatGPT+Causality _{user,sys}	0.235	0.046	0.668	1.109	2.91	16.44	3.95	2.17	1.32
		1	_				-		

- Stronger interpretation (IP), which involves understanding and empathizing through shared experiences is more frequently observed in the trained T5 model, while ChatGPT tends to respond from the view of a machine.
- Indicating a potential need of balancing the response diversity and the accuracy in generating empathetic response.

Case studies

	Context	user: I'm so sad because I've read an article about a newborn girl who died because her parents didn't believe in medication and doctors.					
	MOEL	sys: I am so sorry to hear that. I hope you are able to find her.					
	MIME	sys: That is sad. I am sorry to hear that.					
Decelines	EmpDG	sys: I am sorry to hear that. I hope you find out of it.					
Baselines	CEM	sys: Oh no, I am so sorry to hear that.					
	LEMPEx	sys: I'm sorry to hear that. I'm so sorry to hear that.					
	ChatGPT	sys: That's heartbreaking.					
	Chator I	It's important to trust medical professionals and seek help when needed.					
	Concelity	user wants: to tell their friends; to cry; to find out what happened.					
	Causanty _{user}	user reacts to: sad; sorrowful; depressed; upset.					
	Consolity	sys's intent: to comfort user; to show empathy; to be supportive.					
Ours	Causanty _{sys}	sys reacts to: sad; upset; empathetic; sympathetic; concerned.					
	T5+Causality _{user,sys}	sys: I know what you mean, I would have been so mad!					
	ChatGPT (Cousality	sys: That's really heartbreaking.					
	ChatOF 1+Causanty _{user,sys}	I'm here for you if you need to talk or just need someone to listen.					

Conclusion

- A *commonsense-based causality explanation* approach that reasons not only the user's desires/reaction but also the system's proper intention/reaction.
- Integration of T5 with ChatGPT's reasoning capability realizes more empathetic responses that result in better evaluations.
- They are more accurate and empathetic than the responses by ChatGPT while not so diverse.

Thanks for you attention!

Q&A

KYOTO UNIVERSITY