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ABSTRACT

Emotion recognition has received significant attention in recent years and become
anew frontier of natural language processing research due to its widespread applications
in diverse areas, such as social media, health care, education, and artificial intelligence
interactions. Therefore, the effective and scalable emotion recognition algorithms are
of great significance.

Emotion recognition based on context-dependence and context-independence are
two major tasks in the community. For the first task, previous studies utilize contex-
tual semantics and emotion lexicon for affect modeling. However, they ignore infor-
mation that may be conveyed by the emotion labels themselves. Different from the
non-conversational text in the first task, it is particularly challenging to model the ef-
fective context-aware dependence for the second task. It is difficult to enable machines
to understand emotions in conversations, as humans often rely on the contextual inter-
action and commonsense knowledge to express emotion. Therefore, both context and
incorporating external commonsense knowledge are essential for the task of ERC.

To address the problem in the first task, we propose the sentiment similarity-
oriented attention (SSOA) mechanism, which uses the semantics of emotion labels to
guide the model’s attention when encoding the input conversations. Thus to extract
emotion-related information from sentences. Then we use the convolutional neural net-
work (CNN) to extract complex informative features. In addition, as discrete emotions
are highly related with the Valence, Arousal, and Dominance (VAD) in psychophysi-
ology, we train the VAD regression and emotion classification tasks together by using
multi-task learning to extract more robust features. The proposed method outperforms
the benchmarks by an absolute increase of over 3.65% in terms of the average F1 for
the emotion classification task, and also outperforms previous strategies for the VAD
regression task on the IEMOCAP database.

To further the problems in the second task, we propose a new multimodal Semantic-
and Knowledge-guided Graph Convolutional Network (ConSK-GCN) to effectively
structure the semantic-sensitive and knowledge-sensitive contextual dependence in each
conversation. Previous studies either focused on extracting features from a single sen-

tence and ignored contextual semantics; or only considered semantic information when
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constructing the graph,ignoring the relatedness between the tokens. We hypothesize
that both semantic contexts and commonsense knowledge are essential for machine to
analyze emotion in conversations. On the one hand, we construct the contextual inter-
action and intradependence of the interlocutors via a conversational semantic-guided
GCN (ConS-GCN). In this context graph, each utterance can be seen as a single node,
and the relational edges between a pair of nodes/utterances represent the dependence
between the speakers of these utterances. On the other hand, we incorporate an ex-
ternal knowledge base that is fundamental to understand conversations and generate
appropriate responses to enrich the semantic meaning of the tokens in the utterance vi-
a a conversational knowledge-guided GCN (ConK-GCN). Furthermore, we introduce
an affective lexicon into knowledge graph construction to enrich the emotional polar-
ity of each concept. Furthermore, we leverage the semantic edge weights and affect
enriched knowledge edge weights to construct a new adjacency matrix of our ConSK-
GCN for better performance in the ERC task. In addition, we focus on multimodal
emotion recognition using the acoustic and textual representations, because both text
and prosody convey emotions when communicating in conversations. Experiments on
IEMOCAP illustrate that our proposed model performs better than all of the baseline
approaches, with an improvement of at least 1.3% in terms of average accuracy and F1
with unimodality and more than 4% with multimodality. Experiments on MELD show
that the proposed ConSK-GCN has a better performance with more than 5.7% than the
state-of-the-art approaches in terms of F1 in both unimodal and multimodal emotion
recognition, illustrating that our methodology could effectively construct the contextual
dependence of the utterances in a conversation.

KEY WORDS: Emotion Feature Enhancement, Multi-task Learning, Graph Con-

volutional Neural Network, Knowledge, Multimodal Emotion Recognition
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CHAPTER 1 Introduction

CHAPTER 1 Introduction

1.1 Research background

Emotion recognition, which is the subtask of affective computing, has remained the
subject of active research for decades. In the literature, emotion recognition has mainly
focused on nonconversational text, audio, or visual information extracted from a single
utterance while ignoring contextual semantics. Deep learning methods such as the deep
neural network (DNN)!!, convolutional neural network (CNN)!?!, and recurrent neural
network (RNN)E! are the most commonly used architectures for emotion recognition
and usually achieve competitive results.

More recently, emotion recognition in conversations (ERC) has attracted increas-
ing attention because it is a necessary step for a number of applications, including
opinion mining over chat history, social media threads (such as YouTube, Facebook,
Twitter), human-computer interaction, and so on. Different from non-conversation cas-
es, nearby utterances in a conversation are closely related to semantics and emotion.
Furthermore, we assume that the emotion of the target utterance is usually strongly
influenced by the nearby context (Fig. 1). Thus, it is important but challenging to
effectively model the context-sensitive dependence among the conversations.

RNN-based methods such as bc-LSTM™ apply bidirectional long short-term
memory (BLSTM) to propagate contextual information to the utterances and process
the constituent utterances of a dialogue in sequence. However, this approach faces the
issue of context propagation and may not perform well on long-term contextual in-
formation™. To mitigate this issue, some variants like AIM!® and DialogueRNN!!
integrate with an attention mechanism that can dynamically focus on the most relevant
contexts. However, this attention mechanism does not consider the relative position of
the target and context utterances, which is important for modeling how past utterances
influence future utterances and vice versa. DialogueGCN®! and ConGCN™! employ a
graph convolutional neural network (GCN) to model the contextual dependence and all
achieve a new state of the art, proving the effectiveness of the GCN on context structure.
As the emotion of the target utterance is usually strongly affected by the nearby utter-

ances and relational edges in the graph would help in capturing the inter-dependence
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P, What’ shappening? /Neutral] ‘

Context — I have to go back. /Sad] ﬁPB

The National Guard is really
spread thin and everyone has
to go. /Sad] Py

Control angry mob

Response PA+ 1o tkno?;ﬁ}at to tell you. ‘

Figure 1-1 An example conversation with annotated labels from the IEMOCAP dataset.

and intra-dependence among the speakers in play. However, both DialogueGCN and
ConGCN only consider the semantic information between utterances. Thus, for im-
plicit emotional texts that do not contain obvious emotional terms, and the words are
relatively objective and neutral, it is difficult to correctly distinguish the emotions if
only the semantics of the utterances are considered.

Both semantic context and commonsense knowledge are essential for the machine
to analyze emotion in conversations. Figure 1 shows an example demonstrating the
importance of context and knowledge in the detection of the accurate emotion of im-
plicit emotional texts. We can see from figure 1 that, in this conversation, P, ’s emotion
changes are influenced by the contextual information of Pg. By incorporating an exter-
nal knowledge base, the concept ”National Guard” in the third utterance is enriched by
associated terms such as "Military” and ”"Control angry mob”. Therefore, the implic-
it emotion in the third utterance can be inferred more easily via its enriched meaning.
However, in the literature, only a limited number of studies have explored the incorpo-

ration of context and commonsense knowledge via GCN for the ERC task.

1.2 Problem statement

There are two major tasks in the emotion recognition community, one is the
context-independent emotion recognition and another is context-dependent emotion
recognition. It is significant to extract effective emotional features for emotion recogni-
tion but still a challenging task.

In the traditional studies for context-independent emotion recognition, distribut-
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ed representations or pre-trained embeddings are playing important roles in state-of-
the-art sentiment analysis systems. For example, predictive methods Word2Vec!!”!
and Glove!'!!, which can capture multi-dimensional word semantics. Beyond word-
semantics, there has been a big efforts toward End-to-End neural network models!?!
and achieved better performance by fine-tuning the well pre-trained models such as
ELMO!!3 and BERT!#. However, these representations are based on syntactic and
semantic information, which do not enclose specific affective information.

In the task of context-dependent emotion recognition, current research considers
utterances as independent entities alone, but ignores the inter-dependence and relations
among the utterances in a dialogue. However, contextual dependence is significant for
sentiment analysis. Conversational emotion analysis utilizes the relation among utter-
ances to track the user’s emotion states during conversation, it is important but chal-
lenging to effectively model the interaction of different speakers in the conversational
dialogue. Previous studies either use LSTM-based methods for sequential encoding or
apply GCN-based architecture to extract neighborhood contextual information. LSTM-
based methods have the issue of sequence propagation, which may not perform good on
long-term context extraction. To address the long-term propagation issue, some state-
of-the-arts adopt neighborhood-based graph convolutional networks to model conversa-
tional context for emotion detection and have a good performance, due to the relational
edges modeling, which represents the relevance between the utterances. However, for
the utterances that the emotional polarity of which are difficult to distinguish, it is d-
ifficult to correctly detect its emotion if only take the semantics of the utterance into

account.

1.3 Research motivation

For the first issue, previous studies utilize semantics and emotion lexicon for affect
modeling but ignore information that may be conveyed by the emotion labels them-
selves. The key idea centers on the fact that the label embeddings can guide the network
to extract emotion-related information from input sentences.

For the second issue, both intra-dependence and inter-dependence of the interlocu-
tors are significant to model the dynamic interaction and capture the emotion changes
in each turn. Graph neural networks have been shown effective performance at several
tasks due to their rich relational structure and can preserve global structure informa-

tion of a graph in graph embeddings. The neighborhood-based structure of GCN is a
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suitable architecture to extract the contextual information of both inter-interaction and
self-inertial of the speakers. The information conveyed by the semantics of the context
are not enough for emotion detection, especially for the small-scale database and im-
plicit emotional texts. Knowledge bases provide a rich source of background concepts
related by commonsense links, which can enhance the semantics of a piece of text by

providing context-specific concepts.

1.4 Research contents and contributions

The objective of this thesis is to propose a sentiment similarity-oriented attention
mechanism and a new semantic- and knowledge-aware graph convolutional neural net-
work for emotion recognition.

To address the first problem, we propose the sentiment similarity-oriented attention
(SSOA) mechanism, which uses the semantics of emotion labels to guide the model’s
attention when encoding the input conversations. Thus to extract emotion-related in-
formation from sentences. Then we use the convolutional neural network (CNN) to
extract complex informative features. In addition, as discrete emotions are highly relat-
ed with the Valence, Arousal, and Dominance (VAD) in psychophysiology, we train the
VAD regression and emotion classification tasks together by using multi-task learning
to extract more robust features.

To further tackle the second problem, we propose a new multimodal Semantic- and
Knowledge-guided Graph Convolutional Network (ConSK-GCN) to effectively struc-
ture the semantic-sensitive and knowledge-sensitive contextual dependence in each con-
versation. On the one hand, we construct the contextual inter-interaction and intrade-
pendence of the interlocutors via a conversational semantic-guided GCN (ConS-GCN).
In this context graph, each utterance can be seen as a single node, and the relation-
al edges between a pair of nodes/utterances represent the dependence between the s-
peakers of these utterances. On the other hand, we incorporate an external knowledge
base that is fundamental to understand conversations to enrich the semantic meaning of
the tokens in the utterance via a conversational knowledge-guided GCN (ConK-GCN).
Furthermore, we introduce an affective lexicon into knowledge graph construction to
enrich the emotional polarity of each concept. To the end, we leverage the semantic
edge weights and affect enriched knowledge edge weights to construct a new adjacency
matrix of our ConSK-GCN for better performance in the ERC task.

This thesis proposed a a sentiment similarity-oriented attention mechanism and a
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new semantic- and knowledge-aware graph convolutional neural network for emotion
recognition. Experiments on two databases demonstrate that the proposed methodolo-
gy can effectively improve the accuracy of emotion detection in conversation, especially
for the document with implicit emotion expression. Knowledge base enriched the se-
mantics of each utterance in conversation with several related concepts, and affective
lexicon enhance the emotion polarity of each concept in the conversation. Moreover,
both two technologies can be applied as an important part of the human-robot system

to enhance emotional interaction and improve user experience.

1.5 Thesis organization

The organization of this thesis is generalized as belows:
Chapter 1:
We introduces the background of emotion recognition in conversations and illustrate the
significance of extracting effective emotion features for a better performance in emotion
recognition. Then we elaborated on the existing problems in current research and put
forward our motivation based on these problems. And also the objective of this thesis.
Chapter 2:
We first introduce related works based on single and multi-modalities for the task of
emotion recognition. Then we describe the important factors in the task of emotion
detection in conversation. Then the state-of-the-art approaches of incorporating knowl-
edge base and graph convolutional neural network in the conversational emotion analy-
sis are described to show the effectiveness of these two methods.
Chapter 3:
We introduce our proposed method for context-independent emotion detection in de-
tail, which is sentiment similarity-oriented attention model with multi-task learning for
text-based emotion recognition.
Chapter 4:
In this chapter, we make detailed description about our proposed method for context-
dependent emotion detection, which is conversational semantic- and knowledge-guided
graph convolutional network for multimodal emotion recognition.
Chapter 5:
In this part, we eventually make a conclusion about the contributions of this work and

then give an outlook on future work.
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Emotion is inherent to humans and with the development of human-robot inter-
action, emotion understanding is a key part of human-like artificial intelligence. The
primary objective of an emotion recognition system is to interpret the input signals
from different modalities, and use them to analyze the emotion intention of the users in
the conversation or social network. As shown in figure 2.1, which is one of the typical
emotion recognition framework, the extracted and processed features of the selected
modalities are used to determine emotions by applying appropriate classification or re-
gression methods. Meanwhile, external knowledge, such as personality, age, gender
and knowledge base are usually applied to enrich the meaning of each modality. Then

the final decision is made by fusing different results.

Modality Feature Extraction Suitable Classification Decision-level
Selection and Processing or Regression Model Fusion

External Knowledge Q

Figure 2-1 Typical emotion recognition framework.

2.1 Multimodal emotion recognition

In the literature, there are plenty of efforts focusing on different single modality or
multi-modalities for emotion analysis, such as, physiological signals, facial expression,
acoustic and textual features. In this section, we mainly introduce related works based

on speech or text modality for the task of emotion recognition.

2.1.1 Acoustic modality

Verbal communication aids in recognizing the emotional state of the communicat-
ing person effectively, as speech is one of the most natural ways to express ourselves
and to grasp emotion and content of interlocutors. Speech emotion recognition (SER)
has been around for more than two decades!!' and it has applications in many applica-

17]

tions, such as human-computer interaction!!®!, robots!!”, psychological assessment!®!
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and so on. However, SER is still a challenging task. One of the difficulties is how to
extract effective acoustic features. There are two kinds of most used acoustic features in
SER: (1) auditory-based features, such as Mel Frequency Cepstral Coefficient (MFCC),
FO, zero-crossing-rate (ZCR), energy; (2) spectrogram-based deep acoustic features.

The auditory-based features are selected based on human auditory perception,
which can be extracted by the openSMILE!""! tool with 384 dimensions proposed in 2",
The selected 16 low-level descriptors (LLDs) and their first-order derivatives are the ba-
sic features, and then 12 functionals are applied to these basic features, as shown in table
2.1.

There exits several problems in extracting auditory-based features manually, such
as it’s time-consuming and producing a limited number of feature categories?!!. With
the development of deep learning, there is a trend in the field of speech processing to use
Convolutional neural networks (CNNs) directly on spectrograms to extract deep acous-
tic features?!, and then applied the Bidirectional Long Short-Term Memory (BLSTM)
to recognize emotions. The CNN-BLSTM model?!** has been widely adopted for

SER at present and has shown good performance.

2.1.2  Text modality

Text emotion recognition has emerged as a prevalent research topic that can make
some valuable contributions in social media applications like Facebook, Twitter and
Youtube. It is significant to extract effective textual features for emotion recognition but
still a challenging task.

In the traditional studies, distributed representations or pre-trained embeddings are
playing important roles in state-of-the-art sentiment analysis systems. For example,
predictive methods Word2Vec!?! and Glove!!!, which can capture multi-dimensional
word semantics. Beyond word-semantics, there has been a big efforts toward End-to-
End neural network models''?! and achieved better performance by fine-tuning the well
pre-trained models such as ELMO!'3! and BERT !,

Table 2-1 Auditory-based feature set

MFCC(1-12): Mel Frequency Cepstral Coefficient,

RMS Energy(1): root mean square frame energy,

LLDs (162) FO(1): fundamental frequency,

ZCR(1): zero-crossing-rate from the time signal,

HNR(1): harmonics-to-noise ratio by autocorrelation function

Max, min, mean, range, standard deviation, kurtosis, skewness,

Functionals(12) offset, slope, MSE, absolute position of min/max
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(124271 introduced lexical re-

To enrich the affective information into training,
sources to enrich previous word distributions with sentiment-informative features,
as lexical values are intuitively associated with the word’s sentiment polarity and
strength.!?%! proposed a lexicon-based supervised attention model to extract sentiment-

(27] introduced a

enriched features for document-level emotion classification. Similarly,
kind of affect-enriched word distribution, which was trained with lexical resources on
the Valence-Arousal-Dominance dimensions. These studies demonstrate the effective-

ness of sentiment lexicons in emotion recognition.

2.1.3 Multi modality

To detect the emotions in utterances, humans often consider both the textual mean-
ing and prosody. Moreover, people tend to use specific words to express their emotion
in spoken dialog, for example the use of swear words[?®!. A multimodal structure is thus
necessary for using both the text and audio as input data®. The current research such
as!!33% on pattern recognition also shows that the use of multimodal features increases
the performance compared to single modality.

To accurately recognize human emotions, one of the challenges is the extraction
of effective features from input data, while another is the fusion of different modalities.
There are three major fusion strategies ! as shown in Figure 2.2: data/information fu-
sion (low-level fusion), feature fusion (intermediate-level fusion), and decision fusion
(high-level fusion). Data fusion combines several sources of raw data to produce new

311, In

raw data that is expected to be more informative and synthetic than the inputs
intermediate-level feature fusion, data from each modality is first input to the best per-
forming uni-modal networks which learn intermediate embeddings. The intermediate
weights from these uni-modal networks are then concatenated and feed into another
network such as fully connected layer to capture interactions between modalities™?.
Decision fusion uses a set of classifiers to provide a unbiased and more robust result.
The outputs of all the classifiers are merged together by various methods to obtain the

final output.

2.2 Emotion recognition in conversations

Due to the growing availability of public conversational data, emotion recognition
in conversation (ERC) has gained more attention from the NLP community *7=!, ERC

can be used to analyze conversations that happen on social media to mine emotion and
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o] ~ owpn  owu__J
f i
Fully-connected Fully-c?nnected ‘ Output U ‘ Output U
Concatenate I I
Classifier Fully-connected Fully-connected
x Fully-connected Fully-connected
: : Classifier Classifier
Concatenate ‘ Classifier ‘ Classifier I I
Text Audio Text Audio Text Audio
(a) Data fusion (b) Feature fusion (c) Decision fusion
Figure 2-2 Main fusion strategies multimodaltiy.

opinion, rather than single utterance. It can also aid in analyzing contextual information
in real times, which can be instrumental in human-robot interaction, interviews, and

more 331,

2.2.1 Variables in conversations

Unlike utterance-level emotion recognition tasks, ERC relies on context architec-
ture and modeling the contextual interaction of interlocutors. Poria et al classified con-
versations into two categories: task oriented and non-task oriented (chit-chat), mean-
while, factors such as topic, intent and speaker personality play the important role in
the conversational interaction, as illustrated in Figure 2.3, in which grey and white cir-
cles represent hidden and observed variables, P represents personality, U represents
utterances, S represents interlocutor state, / represents interlocutor intent, £ represent
emotion and Topic represents topic of the conversation*?!. It is a typical theoretical
structure of dynamic interaction in conversation. Taking consideration of these factors
would help modeling the discourse structure of the conversation and capture the true
emotion and intention of the interlocutors.

For example, Li et al®**! exploited speaker identification as an auxiliary task to en-
hance the utterance representation in conversations. Topic modeling based on the sub-
ject’s responses is significant to exploit global and time-varying statistics!*!. Genevieve
Lam et al proposed a novel method that incorporated a data augmentation procedure
based on topic modelling using transformer to capture contextual representations of text
modality, and adopted 1D convolutional neural network (CNN) based on Mel-frequency
spectrogram to extract deep acoustic features. To capture contextual information from

target utterances’ surroundings in the same video, Poria et al'¥ proposed a LSTM-based

10
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Person A Person B
Figure 2-3 Interaction among different controlling variables during a dyadic conversation

between speakers [*3],

model called bidirectional contextual long short-term memory (bc-LSTM), which are
two unidirectional LSTMs stacked together having opposite directions. Therefore, the
information from utterances occurring before and after itself can be captured. Ma-
jumder et al'”! applied three gated recurrent units (GRU)3®! to track the update of global
context ,emotion and speaker state respectively. Yeh et al’*”! proposed a new interaction-
aware attention network (IAAN) that integrated contextual information in the learned a-
coustic representation through an attention mechanism. Hazarika et al®® came up with
a deep neural architecture, incorporated with conversational memory network, which
leverages contextual information from the conversation history. Such memories are
merged using attention-based hops to capture inter-speaker dependencies. Studies such
as!*73338] are conducted based on multimodal representations, the results of these stud-

ies demonstrate that multimodal systems outperform the unimodal variants.

2.2.2 Conversational context modeling

There are two important factors in emotional dynamics in dialog: self and inter-
personal dependencies®’. Self-dependency can be also understood as emotional in-
ertia®!, which depicts the emotional affects that speakers have on themselves during
a conversation. Meanwhile, inter-personal dependencies represent the emotional influ-

ences that the counterpart induces on a speaker/listener. As shown in the Figure 2.4,

11
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person A has the emotion inertia of being neutral. But the emotion of person B was
largely affected by person A. As person B’ emotion was neutral at the begin, after the
response Us of person A, the emotion of person B was changed to anger. It is obvious
that the semantic meaning of Us displeased person B. And we can also see that Ug con-
veys the emotion of sarcasm. It is challenging to detect the emotion of this utterance
as the semantic meaning of itself is positive, but the true meaning should be negative,
therefore, context modeling is essential to capture the real intention and emotion of this

kind of utterances.

Person A Person B

U T There is regular jobs on there. /Newutral] ‘

You know what? I heard about that job, 1 applied
for that. /Neutral]

You've been looking for a job for a long time; that
Us was a long time ago. Right? /Neuiral]

them what I'm good at. /Neutral]

I just, you know, think you should try a little
Us harder maybe. /Neuiral]

I'm not frustrated. Who do you think you are?
[Anger]

Yeah. I just- I mean I call people up and I tell ?

U, + Idon’ tthink 1 am anyone. /Newuiral] ‘

You are so high and mighty. /Anger/ j, Us

Figure 2-4 An example conversation from the IEMOCAP dataset

We assume that the surrounding utterances affect most for the target response,
however, not only the contextual information from the local but also the distant con-
versational history are important for context modeling, especially in the situation that
speaker refer to the topic and information from the distant context. Therefore, how to
model the contextual sequence and chose the most useful information in a conversation
is a difficult but indispensable task.

RNN-based methods such as bc-LSTM™ apply bidirectional long short-term
memory (BLSTM) to propagate contextual information to the utterances and process
the constituent utterances of a dialogue in sequence. However, this approach faces the
issue of context propagation and may not perform well on long-term contextual infor-
mation!. To mitigate this issue, some variants like DialogueRNN! integrate with an

attention mechanism that can dynamically focus on the most relevant contexts. How-

12
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ever, this attention mechanism does not consider the relative position of the target and
context utterances, which is important for modeling how past utterances influence future
utterances and vice versa. DialogueGCN®! and ConGCN"™! employ a graph convolu-
tional neural network (GCN) to model the contextual dependence and all achieve a new
state of the art, proving the effectiveness of the GCN on context structure. However,
both DialogueGCN and ConGCN only consider the semantic information between ut-
terances. Thus, for implicit emotional texts that do not contain obvious emotional terms,
and the words are relatively objective and neutral, it is difficult to correctly distinguish
the emotions if only the semantics of the utterances are considered. Both semantic con-
text and commonsense knowledge are essential for the machine to analyze emotion in
conversations. Figure 1.1 shows an example demonstrating the importance of contex-
t and knowledge in the detection of the accurate emotion of implicit emotional texts.
In the literature, only a limited number of studies have explored the incorporation of
context and commonsense knowledge via GCN for the ERC task. In the next section
2.3 and 2.5, we will briefly introduce the review of graph convolutional network and

knowledge base in conversational emotion recognition.

2.3 Graph convolutional neural network

With the development of deep neural networks, the researche on pattern recog-
nition and data mining has been a significant and popular topic. Methods such like
CNNPE! has been widely used in the euclidean structure (e.g., images, text, and videos).
Taking image data as an example, it can be considered as the regular grid in the eu-
clidean space, and CNN is able to exploit the shift-invariance, local connectivity, and
compositionality of image data'*’!. Therefore, CNN can extract local deep meaningful
features. However, there are many situations that data can not be displayed as euclidean
structure, such as social network, e-commerce, information network, citation link, we
can structure this kind of data in the form of graph, or non-euclidean architecture.

Motivated by CNNs, RNNs, and other deep learning methods, new generalizations
and definitions of important operations have been rapidly developed in the past few
years to deal with the complexity of graph data. As shown in Figure 2.5, in (a), each
pixel in an image can be taken as a node where neighbors are determined by the filter
size. The 2-D convolution takes the weighted average of pixel values of the yellow
node along with its neighbors. It is ordered and has a fixed size in the neighbors of a

node. In (b), a graph convolution can be generalized from a 2-D convolution. An image

13
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(a) 2-D convolution (b) Graph convolution
Figure 2-5 Euclidean Structure versus Non-Euclidean Structure.

can be considered as a special case of graphs, where pixels are connected by adjacent
pixels. Similar to 2-D convolution, the operation of graph convolution is taking the
weighted average of yellow one’s neighborhood information, however, different from
the structure in (a), the neighbors of a node are unordered and variable in size*!.
There are several variances in graph neural networks, such as Recurren-
t GNNs (RecGNN)!*?I| Convolutional GNNs (ConvGNNs)*, Convolutional recur-
rent GNNs (GCRN)*4, Graph Autoencoders (GAEs)!*!, and Spatial-Temporal GNNs
(STGNNs)#0. In our studies, we focus on the ConvGNNs , which generalize the op-
eration of convolution from grid data to graph data. The main idea is to generate the
representation of a node by aggregating its own features and surrounding features.
Convolutional graph neural networks have been widely used in the pattern recog-
nition community. There are two categories of ConvGNNs, spectral-based and spatial-
based. In spectral-based approaches, the properties of a graph are in relationship to the
characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the
graph, such as its adjacency matrix or Laplacian matrix. Spatial-based approaches ex-
tract the spatial features on the topological graph based on the neighbors of each vertex.
GCN!! bridged the gap between spectral-based and spatial-based approaches, spatial-
based methods have developed rapidly due to its competitive advantages in efficiency,
flexibility and generality . As for the graph-based neural network model f(X, A), the
layer-wise propagation rule of a multi-layer Graph Convolutional Network (GCN) is

displayed as following [+

H®Y = (D 2AD s HOW®) (2-1)

where A = A + Iy is the adjacency matrix of the undirected graph with added self-
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connections. Iy is the identity matrix, D; = 3, A;; and W is a layer-specific trainable
weight matrix. o(-) represents an activation function, such as the ReLU(-) = max(0, -).
H" € RMP is the matrix of activation in the I layer. H" = X,

In the literature, GCN has been widely used in several works recently, such as
text classification!*’!, aspect-level sentiment classification!*®!, emotion recognition in
conversations!®), and have achieved competitive performance, where GCN is used to

encode the syntactic structure of sentences.

rel_1 (in) —

__rel_1(out) ____

rel_N (in)
rel_N (out)
self-loop — self-loop —,

Figure 2-6 Diagram for computing the update of a single graph node/entity (red) in the R-GCN
model proposed in!1.

Inspired by GCN which operates on local graph neighborhoods, Schlichtkrull et
al™! proposed the Relational Graph Convolutional Networks (R-GCNs) to extend GC-
N to large-scale relational data, such as in knowledge graphs. As shown in figure 2.6,
the representation of the surrounding nodes (blue) and self (red) are accumulated and
then transformed based on every relation type, then the result embedding (green) is
gathered in a normalized sum and passed through an activation function. The directed
and labeled multi-graph can be denotes as G = (V, E, R), meanwhile, V is the nodes
(entities) set, and E is the labeled edges (relations) set, and R represents the relation
type which contains both born_in and born_in_inv. And the propagation model for cal-
culating the forward-pass update of an entity with surrounding edges in a relational
multi-graph is defined as:

W=y Z . W(’)h(l) W R (2-2)

reR ]eN’
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where N denotes the set of neighbor indices of node i under relation r € R. ¢;, is a

problem-specific normalization constant that can either be learned or chosen in advance.

B
wo =" ayv (2-3)
b=1
B
W =P o, (2-4)

b=1
However, to regular the weights of R-GCN layers, especially in highly multi-relational

graph, Michael Schlichtkrull et al also came up with two approaches: basis- (Formula
2.3) and block-diagonal- decomposition (Formula 2.4). Where V" € R4"xdY s the
basis transformation, coefficient ailz depends on r. And Q;f: € R@""/Bx@"/B) The block
decomposition structure encodes an intuition that latent features can be grouped into
sets of variables which are more tightly coupled within groups than across groups .
The R-GCN architecture has a competitive advantage in both link prediction and entity

classification with relational data. Our graph convolution is closely related to this work.

2.4 Knowledge base in emotion recognition

The knowledge base has attracted increasing attention in several research ar-
eas such as open-domain dialogue systems"!, question answering systems>!!, cross-
domain sentiment analysis!®?!, aspect-based sentiment analysis>*!, and emotion detec-
tion in conversations®*!. Commonsense knowledge bases help in grounding text to real
entities, factual knowledge, and commonsense concepts. In particular, commonsense
Knowledge bases provide a rich source of background concepts related by common-
sense links, which can enhance the semantics of a piece of text by providing context-
specific concepts. Zhang et al®*! proposed a knowledge-guided capsule network, which
incorporates syntactical and n-gram information as the prior knowledge to guide the
capsule attention process in aspect-based sentiment analysis. Zhong et al > makes use
of knowledge base by concatenating the concept embedding and word embedding as
the input to the Transformer architecture.

However, using external knowledge as the initial input of the model has limited
utility in helping the model to build effective contextual dependence. Different from
these studies, we incorporate the knowledge base and semantic dependence via new
ConSK-GCN to capture both semantic-aware and knowledge-aware contextual emotion
features. We construct knowledge graph based on the selected concepts first. Then we

apply our knowledge graph to guide the semantic edge weighting of GCN, which helps
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to capture significance context-sensitive information of conversations with both implicit

and explicit emotional texts.
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CHAPTER 3 Sentiment Similarity-oriented Attention Model for
Context-independent Emotion Recognition

3.1 SSOA mechanism with multi-task learning

Figure 3.1 gives the overall framework. First, the sentence encoder approach is
used to generate representations for all the input texts and emotional labels. Then
we adopt the proposed sentiment similarity-oriented attention mechanism to obtain the
sentiment-enriched text representations, followed by a CNN to extract deep informative
features. In addition, we introduce multi-task learning for both emotion classification

and VAD regression to extract more robust representations.

3.1.1 Sentence encoder

Cer et al'®! has published two kinds of universal sentence encoder for sentence em-
bedding, one is trained with Transformer encoder®!, while the other is based on deep
averaging network (DAN) architecture!®”), and all of them can be obtained from the TF
Hub website. We use the first one (USE_T) for our sentence encoder part to encode
texts and emotion labels into sentence embeddings. Rather than learning label embed-
dings from radome, we also explore using contextual embeddings from transformer-
based models. This allow us to use richer semantics derived from pre-training. The
reason that we use sentence embeddings not conventional pre-trained word embeddings
as when computing emotion of one sentence based on word level may cause sentiment
inconsistency. For example, in a sentence sample 'You are not stupid.” word not and
stupid are both represent negative emotion, if just concatenate them to represent the

emotion of this sentence, it is negative, which should be positive.

3.1.2 Sentiment similarity-oriented attention

In this section, we introduce our proposed SSOA mechanism more explicitly. The
main idea behind the SSOA mechanism is to compute affective attention scores between
the labels and the representations of the input sentences that is to be classified. Formally,
let S = {s;...s;...s5} be the set of the sentences in the database, where N is the total

number of training data set. E = {ey, e,, €3, e4} be the set of four emotion labels (Happy,
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Texts :

# That is really romantic.
# That is out of control.

# Do not be stupid.

# That is the wind.

# Things just are not what

Sentiment-enriched
— .
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they seem.

# There is nothing 1 can do.
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Figure 3-1 Overall framework of proposed methodology: Sentiment similarity-oriented

attention model with multi-task learning.

Angry, Neutral, Sad) same as in®8¥ Val = {val,,val,,vals,vals} be the set of valence
scores of the emotions, which selected from ANEW lexicon™!. We define val; as the
sentiment polarity of each emotion e;, which is a real number and indicates the strength
of each emotion.

For each s; in §, 1 < i < [, where [ is batch size. And eache;in E, 1 < j < 4,
we directly assess their sentence embedding s; and e respectively, produced by the
sentence encoder. For the pairwise sentiment similarity sim (sf, e;), we compute it based
on the method proposed in'3!, that first compute the cosine similarity of the sentence
embedding and emotion embedding, then use arccos to convert the cosine similarity into
an angular distance, which had experimented to have better performance on sentiment

similarity computing, that is,

e
sim (si,ej) =|1-arccos| ————/rx (3-1)
17 el

T

where 57" represents the transpose of si. For each sim (sj,ej.), we use the softmax

function to compute the weight probability w; ; as:
exp (sim (s;.*, e;‘.))
Z‘}:l exp (sim (s;.", e;‘.))

Then the affective attention a; ; that sentence s; oriented on each emotion is computed

i = (3-2)
as below:
(3-3)

aj = * (Valei,j)

We add a scaling hyper-parameter « to increase the range of possible probability values
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for each conditional probability term. The sentiment-enriched text representations D

can be induced as follows:

[
D = Z Wss;“a,-,j (3'4)

4
i1 =1
where W, denotes sentence-level weight matrices, D € R>* and d° is the size of

sentence embedding.

3.1.3 Multi-task learning

In this subsection, we introduce multi-task learning for both emotion classifica-
tion and VAD regression task, as the knowledge learned in one task can usually im-
prove the performance of another related task and enrich robustness of different type
tasks!%*®!1 Each sentence s; in the training corpus has the following feature and label
set [s7, Vemo.is Yval.is Yaro.is Ydom.i)], Where st represents the sentence embedding of s;, and
(Vemo.i» Yvatis Yaro.is Yaom.i) T€present the associated categorical emotion, dimensional va-
lence, arousal and dominance label separately. We apply CNN and three dense layers
as informative feature extractor, then H* is the final document vector. The probability

of emotion classification task is computed by a softmax function:
P Yemo) = softmax (W,H* + b,) (3-5)

where W, and b, are the parameters of the softmax layer. We use categorical cross

entropy loss function for the first task, the objective function of this system is as follows:

1 l
Je = _7 ; lOgP ()}emo,i) [yemo,i] (3-6)

where y,..,; is the expected class label of sentence s; and P (yep,,) is the probability
distribution of emotion labels for s;. However, for the continuous labels, the softmax
layer is not applicable, we use the linear function to predict the values for the VAD

P . for sentence s; is calculated using the
vallaroldom,i

regression task. Then the predict value y

following formula:

P = linear (Wh! + by) (3-7)

yvallaro\dom,i
where h! represents the final vector of sentence s;, W, and b, represent weights and bias

respectively. Given [ training sentences, we use the mean squared error loss function

for VAD analysis, the loss between predicted dimensional values y” -and original
vallaroldom,i
: 0 1 .
continuous labels Voatlaroldom.i 1S calculated as below:
!
1 » Y 2
Ls,vallarold()m - 3_l (yvallaroldom,i - yvallar()ldum,i) (3_8)
i=1
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Then the objective function for the whole system is:
J = Je +B * (Ls,act + Ls,aro + Ls,dom) (3'9)

where  is the hyper-parameter to control the influence of the loss of the regression

function to balance the preference between classification and regression disagreements.
3.2 Experiments and analysis

3.2.1 Database and lexicon

3.2.1.1 The IEMOCAP emotion database

The Interactive Emotional Dyadic Motion Capture (IEMOCAP) database®*! con-
tains videos of ten unique speakers acting in two different scenarios: scripted and im-
provised dialog with dyadic interactions. We only use the transcript data. To compared
with state-of-the-art approaches, we use four emotion categories and three sentiment
dimensions with 5531 utterances in this study. The four-class emotion distribution is:
29.6% happy, 30.9% neutral, 19.9% anger and 19.6% sad. Note that happy and excited
category in the original annotation are included into happy class to balance data dis-
tribution between classes. For valence, arousal and dominance labels, self-assessment
are used for annotation, in which the scale is from 1 to 5. In this paper, we focus on
speaker-independent emotion recognition. We use the first eight speakers from session

one to four as the training set, and session five as the test set.
3.2.1.2 The ANEW affective lexicon

The emotional values of the English words in Affective Norms for English Words
(ANEW) P were calculated by means of measuring the psychological reaction of a
person to the specific word. It contains real-valued scores for valence, arousal and
dominance (VAD) on a scale of 1-9 each, corresponding to the degree from low to high
for each dimension respectively. We select the Valence rating as the sentiment polarity
which can distinguish different emotions of distinct words with the scale ranging from

unpleasant to pleasant.

3.2.2 Experimental setup

Following®>!, we set the dimension of the sentence embedding to 512. We use a
convolutinoal layer with 16 filters each for kernel size of (4,4) and a max-pooling layer

with the size of (2,2). As for dense layers, we use three hidden dense layers with 1024,
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512 and 256 units and ReLU activation!®’! separately. For regularization, we employ
Dropout operation!®*! with dropout rate of 0.5 for each layer. We set the mini-batch
size as 50 and epoch number as 120, Adam!%! optimizer with a learning rate 0.0002,
clipnorm as 5. And we set the parameter 8 to 1.0 to control the strength of the cost
function for the VAD regression task.

We evaluate the experimental results of both single-task learning (STL) and multi-
task learning (MTL) architecture. In the single-task architecture, we build seperate sys-
tems for emotion classification and VAD regression, whereas in multi-task architecture

a join-model is learned for both of these problems.

3.2.3 Experimental results and analysis

3.2.3.1 Comparison to state-of-the-art approaches:

To quantitatively evaluate the performance of the proposed model, we compare
our method with currently advanced approaches. The following are the commonly used
benchmarks:

Tf-idf+Lexicon+DNN!!: Introducing affective ANEW ! lexicon and the term
frequency-inverse document frequency (#f-idf) to construct the text features with DNN
for emotion classification on IEMOCAP.

CNN[2!: A efficient architecture which achieves excellent results on multiple
benchmarks including sentiment analysis.

LSTMs!®: Two conventional stacked LSTM layers for emotion detection using
the text transcripts of IEMOCAP.

Deepmoji!®': Using the millions of texts on social media with emojis to pre-train
the model to learn representations of emotional contents.

BiGRU+ATT!%”): A BiGRU network with the classical attention (ATT) mecha-
nism.

BiLSTM+CNN!®8l: Incorporating convolution with BiLSTM layer to sample
more meaningful information.

BERT 5 !'¥: Bidirectional encoder with 12-layer Transformer blocks, which
obtains new state-of-the-art results on sentence-level sentiment analysis.

In order to evaluate the performance, we present accuracy and F1-score for emo-
tion classification task. As for VAD regression work, we use the mean squared error
(MSE) and pearson correlation coefficient (r) to evaluation the performance, in which

the lower MSE value and higher r correlation, the better performance. Experimental
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results of different methods in single task framework are shown in Table 3.1 and Table

3.2

Table 3-1 F1, Accuracy for the comparative experiments in emotion classifiation framework.
Acc.=Accuracy(%), Average(w)=Weighted average(%). The best results are in bold.
IEMOCAP
ID Model Happy Anger Neutral Sad Average(W)
Acc. FI Acc. FI Acc. FI Acc. FI Acc. FI
1 Tf-idf+Lexicon+DNNTT | 63.80 69.29 | 68.24 67.64 | 60.68 58.84 [ 62.86 57.69 | 63.89 63.39
2 CNN 64.71 69.00 | 72.35 64.23 | 60.16 59.08 | 62.45 62.70 | 64.92 63.75
3 LSTMsP! 60.41 69.08 | 71.18 66.30 | 61.72 59.18 | 68.98 62.25 | 65.57 64.20
4 Deepmoji 6! 5837 66.15 | 61.18 63.03 | 72.14 61.56 | 63.67 66.10 | 63.84 64.21
5 BiGRU+ATT!®"! 60.18 68.73 | 76.47 67.01 | 59.64 58.79 | 71.02 64.33 | 66.83 64.72
6 BiLSTM+CNN 68! 63.57 70.60 | 71.76 67.59 | 63.80 61.17 | 66.53 62.21 | 66.42 65.40
7 BERT gy ' 59.05 69.23 | 7235 65.78 | 67.19 63.70 | 73.88 66.54 | 68.12 66.31
Proposed | USE_T+SSOA+CNN 6991 7288 | 71.18 70.14 | 67.71 65.74 | 72.24 71.08 | 70.26 69.96

Table 3-2 MSE and r for the comparative experiments in VAD regression framework
IEMOCAP
ID Model Valence Arousal Dominance
MSE T MSE r MSE T

1 Tf-idf+Lexicon+DNNTT [ 0.755 0.435 | 0.536 0.277 | 0.638 0.318
2 CNN2 0.731 0471 | 0.544 0.345| 0.619 0.359
3 LSTMs!! 0.626 0.575 | 0.413 0.425| 0.536 0.447
4 Deepmoji[(’f’] 0.655 0.499 | 0.417 0.421 | 0.514 0.458
5 BiGRU+ATT!¢7! 0.674 0.478 | 0.439 0.378 | 0.561 0.416
6 BiLSTM+CNN [68] 0.685 0.466 | 0.433 0.400 | 0.531 0.442
7 BERT gy 0.566 0.587 | 0.416 0.464 | 0.564 0.460
Proposed | USE_T+SSOA+CNN 0.523 0.603 | 0.402 0.446 | 0.511 0.486

As shown in Table 3.1, our proposed model outperforms the state-of-the-art ap-
proaches with the absolute increase of more than 3.65%, 2.14% on average weighted
F1, accuracy in the emotion classification task. As for VAD regression task, we can see
from Table 3.2 that the proposed model USE_T+SSOA+CNN has better performance
of consistently lower MAE and higher r. The results of the comparative experiments
demonstrate the effectiveness of our proposed model. In order to illustrate the per-
formance of our proposed SSOA mechanism and multi-task training, we do further

researches in the following part.
3.2.3.2 Validation studies of proposed model:

We apply Universal Sentence Encoder which is trained with Transformer®>!
(USE_T) to encode input texts into sentence embeddings and use CNN as the feature
extractor. Therefore USE_T+CNN is the basic architecture and we control it as invari-
ent.

USE_T+ATT+CNN: In order to validate our proposed SSOA mechanism, we also

consider the most useful self-attention mechanism!®%!, which decide the importance of
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features for the prediction task by weighing them when constructing the representation
of text.

USE_T+SSOA+CNN (STL): It is our work in single task framework, which uses
SSOA mechanism to compute attention scores between the label and the representa-
tions of the sentences in the input that is to be classified. This can then be used to
appropriately weight the contributions of each sentence to the final representations.

USE_T+SSOA+CNN (MTL): To demonstrates the effectiveness of incorporating
VAD regression with emotion classification, we experiment this model in the multi-task
framework which trained with both categorical emotion labels and dimensional valence,

arousal, dominance labels.

Table 3-3 Results (%) of Validation studies on emotion classification task
IEMOCAP
Model Happy Anger Neutral Sad Average(W)
Acc. FI [Acc. FI |Acc. FI [Acc. FI |[Acc. Fl
USE_T+CNN 60.63 69.61]70.59 67.61|73.44 66.04|69.80 67.99|68.61 67.81
USE_T+ATT+CNN 69.00 70.77|68.82 68.82|69.01 65.11[66.12 69.53|68.24 68.56
USE_T+SSOA+CNN (STL) [66.97 73.27|70.00 71.47|71.61 64.94|69.80 68.95(69.60 69.66
USE_T+SSOA+CNN (SML) |69.91 72.88|71.18 70.14|67.71 65.74|72.24 71.08|70.26 69.96
Table 3-4 Results of validation studies on VAD regression task
IEMOCAP
Model Valence Arousal Dominance
MSE r MSE r MSE r
USE_T+CNN 0.595 0570 | 0431 0.418 | 0.563 0.464
USE_T+ATT+CNN 0.571 0.582 | 0463 0.415 | 0.554 0.459
USE_T+SSOA+CNN(STL) 0.546 0.591 | 0405 0.441 | 0.526 0.470
USE_T+SSOA+CNN(MTL) | 0.523 0.603 | 0.402 0.446 | 0.511 0.486

From Table 3.3 and Table 3.4, some conclusions can be drawn as following: (1)
Both USE_T+ATT+CNN with self-attention and USE_T+SSOA+CNN with our SSOA
have a better performance than with no attention mechanism as expected. (2) Com-
pared with USE_T+ATT+CNN, our USE_T+SSOA+CNN model achieves a relatively
better result, especially achieves improvement about 2.5% in Happy, 2.65% in Anger
on Fl-score, and have accuracy improvement about 2.6% in Neutral, 3.68% in Sad sep-
arately. The results demonstrate that semantics of emotion labels can guide a model’s
attention when representing the input conversation and our proposed SSOA mechanism
is able to capture sentiment-aware features, meanwhile, self-attention mechanism usu-
ally weights features based on semantic and context information which is not effective
enough for emotion recognition. (3) Comparatively, as is shown in the last row, when

both the problems are learned and evaluated in a multi-task learning framework, we

25



KR A 208 3

observe performance enhancement for both tasks as well, which illustrates the effec-
tiveness of multitask framework. And as we assume there are two reasons that VAD
regression and emotion classification can assist each other task. On the one hand, emo-
tions are high correlated with valence-arousal-dominance space. On the other hand, we
take emotion labels into attention computing, which can help to capture more valence

and arousal features.
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Figure 3-2 t-SNE visualization of validation studies on emotion classification.

Furthermore, in order to validate the effectiveness of our proposed method on d-
ifferent emotions, we introduce the t-Distributed Stochastic Neighbor Embedding (t-
SNE) %! for visualizing the deep representations as shown in Figure 3.2. We can see
that compared with Figure 3.2 (a), the points which represent Anger in Figure 3.2 (b)
can be distinguished more easily. The points which represent Happy and Sad have sim-
ilar performance. Compared with Figure 3.2 (b), all the four emotion points have better
discrimination in Figure 3.2(c) which means the deep representations extracted by our
model are more sentiment-aware. However, we can observe from Figure 3.2(c) that
most confusions are concentrated between Anger, Sad with Neutral. We assume the
reason is that Anger and Sad hold the lowest percentage in IEMOCAP, which would

not trained enough in our SSOA training process. Besides, the dataset we use is multi-
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modal, a few utterances such as "Yeah”, "l know” carrying non-neutral emotions were
misclassified as we do not utilize audio and visual modality in our experiments. In Fig-
ure 3.2(d), Sad can be distinguished better, we assume it’s because Sad is one kind of
negative valence and arousal values emotion according to Valence-Arousal representa-
tion®8, whose prediction would be more easy with the help of VAD.

Overall, the proposed USE_T+SSOA+CNN with multi-task learning model outper-
forms the other comparative and ablation studies. It is reasonable to assume that the
proposed model is good at capturing both semantic and emotion features not only in

emotion classification but also the VAD regression task.

3.3 Conclusion

In this section, we described our proposed sentiment similarity-oriented attention
mechanism, which can be used to guide the network to extract emotion-related infor-
mation from input sentences to improve classification and regression accuracy. In addi-
tion, to extract more robust features, we jointed dimensional emotion recognition using
multi-task learning. The effectiveness of our proposed method has been verified under
a series of comparative experiments and validation studies on IEMOCAP. The results
show that the proposed method outperforms previous text-based emotion recognition

by 6.57% from 63.39% to 69.96%, and show better robustness.
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CHAPTER 4 Semantic- and Knowledge-guided Graph
Convolutional Network for Context-dependent
Emotion Recognition

Human-computer interaction has become prevalent in various fields, especially for
spoken dialogue systems and intelligent voice assistants. Emotions, which are often
denoted as an individual’s mental state associated with thoughts, feelings, and behav-
ior, can significantly help the machine to understand the user’s intention. Therefore,
accurately distinguish user’s emotions can enable great interactivity and improve user
experiences.

Contextual dependence is significant for emotion recognition, as the intention and
emotion of the target utterance are mostly affected by the surrounding contexts. Un-
like traditional methods, which based on individual utterances, conversational emotion
recognition utilizes the relation among utterances to track the user’s emotion states dur-
ing conversations. However, it’s a challenging task to effectively model the interaction
of different speakers in the conversational dialog. To solve this problem, previous stud-
ies such as!”'*" proposed the LSTM-base methods for sequential encoding of contexts.
However, this kind of method has the issue of sequence propagation, which may not
perform well on long-term context extraction, as the emotion effect to the target utter-
ance from the long-distance may decrease or even vanish. 314! applied GCN-based
architecture to extract neighborhood contextual information, which solve the issue of
sequence propagation, and the result of these works also demonstrates that GCN are
good at modeling both inter-interaction and intra-dependence of the user in a conversa-
tion, which are the important factors in the task of conversational emotion recognition.
However, for implicit emotional texts that do not contain obvious emotional terms, it is
difficult to correctly distinguish the emotion if only the semantics of the utterances are
considered. Moreover, the lack of sufficient labeled public databases is still an issue.
It’s difficult to extract enough information for emotion recognition because of the small
scale of samples.

Knowledge bases provide a rich source of background concepts related by com-
monsense links, which can enhance the semantics and emotion polarity of one utter-

ance by providing context-specific concepts. Therefore, to further the above problems,
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we propose a new multimodal Semantic- and Knowledge-guided Graph Convolutional
Network (ConSK-GCN) to effectively structure the semantic-sensitive and knowledge-
sensitive contextual dependence in each conversation. Figure 4.1 is the overall archi-

tecture of our proposed model.

Transcriptions . Multimodal Features
Database Preparation .
. Extraction
Speech Signal
A,
Knowledge Retrieval COHSK-G.CN Emotion
Construction Classification

Figure 4-1 Overall architecture of our proposed ConSK-GCN approach for multimodal
emotion recognition

4.1 ConSK-GCN model

4.1.1 Database preparation

To better mine the information of the raw data and capture efficient contextual
traits, we prepare the text and audio data firstly. As for context construction, we first
display the textual data of each dialogue in context sequence, and the sequence order of

audio corresponds to the text, as shown in figure 4.2.

Z

%
P
)
%
>

. Check this out. You know how 1’ ve told youl’ ve M‘W

been really into like softball recently?
u2 Yeah

u

o ) ) Semantic .
u3 This is totally random, 1 got this full scholarship to Dependence ;}
go to U.S.C next year to play softball. o
u4 For softball? That’ s unbelievable. & &//
u5 They’ re going to pay me to go to school. M
Figure 4-2 Architecture of database preparation

4.1.2 Multimodal features extraction

In this study, we focus on multimodal emotion recognition in conversations with

acoustic and textual characteristics, which are complementary to emotion information
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and result in a decent performance. Furthermore, to initialize each modality, we train
separate networks to extract linguistic and acoustic features at the utterance level with

emotion labels, as shown in Figure 4.3.
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Figure 4-3 Architecture of multimodal features extraction

4.1.2.1 Textual features

We employ different approaches to extract utterance-level linguistic features for
IEMOCAP and MELD datasets based on the particular traits of these two datasets.
Formally, the textual representation of an utterance is denoted as ;.

IEMOCAP: To compare with the state-of-the-art approaches, we employ the tra-
ditional and most used convolutional neural network!?! to extract textual embeddings of
the transcripts. First, we use the publicly available pretrained word2vec !’ to initialize
the word vectors. Then, we use one convolutional layer followed by one max-pooling
and two fully connected layers to obtain deep feature representations for each utterance.
We use convolutional filters of size 3, 4, and 5 with 100 feature maps in each. The win-
dow size of max-pooling is set to 2 followed by the ReLU activation!®}!. These are then
concatenated and fed into two fully connected layers with 500 and 100 hidden nodes
separately followed by the RelLU activation.

MELD: The average utterance length and average turn length are 8.0 and 9.6 in the
MELD database, which is 15.8 and 49.2 in IEMOCAP database®®!. The utterances in
MELD are shorter and the context-dependence is not strong as in [IEMOCAP. Therefore
we consider that the approach mentioned above is insufficient to extract effective latent
representations of the utterances in MELD. Considering that BERT_BASE!'*! has shown

the state-of-the-art performance in many NLP tasks, such as reading comprehension,
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abstractive summarization, textual entailment and learning task-independent sentence
representations, therefore we apply BERT _BASE, the model architecture of which is a
multi-layer bidirectional Transformer encoder to initialize the textual representations.
Firstly, we fine-tune the pre-trained BERT_BASE model with 12 Transformer blocks,
768 hidden sizes, 12 self-attention heads, and 110M total parameters for emotion label
prediction from the transcript of the utterances. Then, we take the representations from

the penultimate dense layer as the context independent utterance level feature vectors.
4.1.2.2 Acoustic features

In this paper, we follow the audio preprocessing method introduced in!’!!, Re-
searchers have found that a segment speech signal that is greater than 250-ms includes
sufficient emotional information’?!. As the average utterance length of IEMOCAP
dataset is around 2-s, and it’s about 3.6-s in MELD dataset*®!. Therefore, for IEMO-
CAP dataset, the time of each segment is set to 265-ms and the slide window is set to
25-ms, then the input spectrogram has the following time X frequency: 32 x 129. For
MELD dataset, we apply a 2-s window size with a slide window of 1-s to transform an
utterance into several segments, and the size of the spectrogram is 1874 x 129.

Two 2-dimensional CNNs are utilized to extract deep acoustic features from the
segment-level spectrograms. We use convolutional filters of size (5,5) with 32 and 65
feature maps for each CNN layer. The window size of max-pooling is set as (4,4) fol-
lowed by the ReLLU activation. Then, the segment-level features are propagated into the
BLSTM with 200 dimensions to extract sequential information within each utterance.
Finally, the features are fed into a single fully connected layer with 512 dimensions at
the utterance level for emotion classification. Formally, the acoustic representation of

an utterance is denoted as u,.
4.1.2.3 Multimodal fusion

After obtaining the textual and acoustic features in an utterance, we concatenate
the embeddings of these two modalities u = [u3u,], and then feed the concatenat-
ed embeddings into two stacked BLSTM for sequence encoding to obtain the global
utterance-level contextual information. Formally, we denote the context-aware multi-

modal representations as s:

S = BiLS TM(S,'(+’_), Mi) (4'1)
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where i=1,2,...,N, and N represents the number of samples, u; and s; are context-

independent and sequential context-sensitive utterance-level representations respective-
ly.

4.1.3 Knowledge retrieval

In this paper, we utilize external commonsense knowledge base ConceptNet!”*!
and an emotion lexicon NRC_VAD!"# as the knowledge sources in our approach.

ConceptNet is a large-scale multilingual semantic graph that connects words and
phrases of natural language with labeled weighted edges and is designed to represent
the general knowledge involved in understanding language, improving natural language
applications by assist natural language applications to better understand the meanings
behind the words used by people. The nodes in ConceptNet are concepts and the edges
represent relation. As shown in Figure 4.4, each <conceptl, relation, concept2> triplet
is an assertion, and each assertion is associated with a single confidence score. For
example, “scholarship has synonym of bursary with confidence score of 0.741”. For
English, ConceptNet comprises 5.9M assertions, 3.1M concepts and 38 relations. Then
we select the corresponding concepts based on the semantic dependence of each con-

versation.

/ Semantic Dependence ConceptNet ‘

Softball  Synonym o Bursary ]

' w:0.741 §
Scholarship Ry g
2 Studentship g
0
HasA UsedFor Legal University in_los_angeles g
People A Scholarship U.S.C Los_angeles_metro_station g
=3
N2 Q
= g
HasContext > FOAY @
O O ) XS g
People B Unbelievable ' S 2
External Knowledge Affect enriched e

Selection USs.C Kllo\\'lcdgwng

Figure 4-4 Architecture of external knowledge retrieval

NRC_VAD lexicon includes a list of more than 20,000 English words with their
valence (V), arousal (A), and dominance (D) scores. The real-valued scores for VAD
are on a scale of 0-1 for each dimension respectively, corresponding to the degree from

low to high.
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4.1.4 ConSK-GCN construction

Figure 4.5 shows the architecture of our proposed ConSK-GCN approach for mul-

timodal emotion recognition.

4.1.4.1 Knowledge graph construction

ﬂnowledge Graph Construction ConSK-GCN Learning \

e L

Y
T < Semantic and Knowledge
/ j . Guided Edge weighting

@ O — Speaker 1
\ife.ctlve O ~— Speaker 2
lexicon

Figure 4-5 Architecture of ConSK-GCN construction

We build the knowledge graph G, = (Vi, E, V,A) based on the conversational
knowledge-aware dependence, where V; is a concept set and Ej is a link set, and E; C
Vi X Vy 1s a set of relation that represent the relatedness among the knowledge concepts.
In addition, for the concepts in V}, we retrieve the corresponding valence (V) and arousal
(A) scores from NRC_VAD, respectively.

Each node/concept in the knowledge graph is embedded into a single effective
semantic space, named ConceptNet Numberbatch, that learns from both distributional
semantics and ConceptNet. The tokens that are not included in the ConceptNet are
initialized by the “fastText” method!”!, which is a library for efficient learning of word
representations. For the concept not in the NRC_VAD, we set the VAD value to 0.5 as
a neutral score.

The edges in the knowledge graph represent the knowledge relatedness between
the concepts. First, for each concept c;,, in utterance i, we adopt /, norm to compute the

emotion intensity emo,,, following>*, that is,
emo,, = min = max(||[V(cim) = 1/2, Alcin)/2]||,) (4-2)

where m = 1,...n, and n is the number of concepts in each utterance. ||.||, denotes

l, norm, V(c;,,) and A(c;,,) represent the corresponding valence and arousal score for
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each concept in utterance i. Then, following!®, we consider the past context window
size of p and future context window size of f, and knowledge edge weights a* ; are

defined as below:

ki,m = emopyCim (4’3)
al; =" abs(coskl, We| ki-pns s kis pm]) (4-4)
m=1

where k;,, is the affect enriched knowledge of concept m in utterance i, and j = i —

p,....i + f, Wi is a learnable parameters matrix.
4.1.4.2 Semantic graph construction

We build the semantic graph G, = (V,, E;) based on the conversational semantic-
aware dependence, where V; denotes a set of utterance nodes, and E; C V X V; is a set
of relations that represent the semantic similarity among the utterances.

The node features in the semantic graph are the multimodal representation s. The
edges in the semantic graph represent the semantic-sensitive context similarity with-
in each conversation. We adopt the method proposed in!’®! to compute the semantic
similarity between two utterances, which is computed as the cosine similarity of two
utterances first, and then employ arccos to convert the cosine similarity into an angular

distance, that is,
.

.8
sim; ;=1 - arccos(———_—)/x (4-5)

Isill || ]
Then, the edge weights in the semantic graph is formulated as:

aij = softmax(W[sim,_,, ..., Sim;, ¢]) (4-6)

where s;, s; denote the multimodal representation of i-th and j-th utterance in the same

conversation respectively, and W is a trainable parameter matrix.
4.1.4.3 ConSK-GCN learning

We build our semantic- and knowledge-guided graph as Gy = (V, Eg). To incor-
porate both knowledge-sensitive and semantic-sensitive contextual features, we lever-
age the addition of the edge weights of knowledge graph (aﬁ ;) and the edge weights of
semantic graph (a; ;) asour adjacency matrix Eg, that is,

a;j = wkaij +(1- wk)aﬁj 4-7)

where w; 1s a model parameter balancing the impacts of knowledge and semantics on

computing the contextual dependence in each conversation. Then, we feed the global
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contextual multimodal representations s and edge weights a; ; into a two-layer GCN ¥

to capture local contextual information that is both semantic-aware and knowledge-

aware:
W =o() Z ”W“)s, +a,;Ws) (4-8)
reR jeN' Lr
i j o 4
JEN]

where N denotes the neighboring indices of each node under relation r € R, R con-
tains relations both in the canonical direction (e.g.born_in) and in the inverse direction
(e.g.born_in_inv). q;, is a problem-specific normalization constant that can either be
learned or chosen in advance (such as ¢;, = |N/]), and Wﬁl),W(()l),W(z),Wéz) are model
parameters, o7(.) is the activation function such as ReLU.

This stack of transformations, Egs. (3.7) and (3.8), effectively accumulates nor-
malized sum of neighborhood features and self-connected features. Then, the global
contextual vectors s as well as the local neighborhood-based contextual vectors hl(.z) are

concatenated to obtain the final representations as following:
= [si ] (4-10)

Furthermore, the utterance is classified using a fully connected network:

l; = ReLUWv; + b)) (4-11)
P; = softmax(Wyl; + b,) 4-12)
Vi = argfgjaX(Pi[k]) (4-13)

where k is the classes of each database, and y; is the predicted emotion class.
We use categorical cross-entropy as well as L2-regularization to compute the loss

(L) during the training, that is:
M d(s)

L=- logP; i1+ 16 (4-14)
ST d(s);; e+ A6l

where M is the number of dialogues in each database, d(s) is the number of utterances
in dialogue s, P;; is the probability distribution of emotion labels for utterance i in
dialogue j, y;; is the label of ground truth of utterance i in dialogue j. And A is the

L2-regularizer weight, 6 is the set of all trainable parameters.
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4.2 Experiments and analysis
4.2.1 Databses

We evaluate our ConSK-GCN on two conversational databases, namely Interac-
tive Emotional Dyadic Motion Capture IEMOCAP)!%?! and Multimodal EmotionLines
Dataset (MELD)*?!. Both these datasets are multimodal datasets containing text, audio
and video modalities for each conversation. In our work, we focus on multimodal e-
motion recognition with the modality of text and audio. However, multimodal emotion
recognition with all these three modalities is left as future work.

As described in section 3, [IEMOCAP database contains videos of ten unique s-
peakers acting in two different scenarios: scripted and improvised dialog with dyadic
interactions. And we use the first eight speakers from sessions 1-4 as the training set
and use session five as the test set to perform speaker-independent emotion recognition.

MELD database was evolved from the EmotionLines database which is collected
by Chen et al.'”’!. EmotionLines was developed by crawling the dialogues from each
episode in the popular sitcom Friends, where each dialogue contains utterances from
multiple speakers. Poria et al. extend EmotionLines into around 13000 utterances from
1433 dialogues with the distribution of 46.95% neutral, 16.84% joy, 11.72% anger,
11.94% surprise, 7.31% sadness, 2.63% disgust, 2.61% fear. The data distribution in
train, validation and test set are shown in Table 4.1. And the statistics of all the emotions

are displayed in Table 4.2.

Table 4-1 Statistics of the IEMOCAP and MELD dataset
Dialogues Utterances

Dataset Train | Val | Test | Train | Val | Test Classes
IEMOCAP 120 31 4290 1241 4
MELD 1039 114 280 | 9989 1109 2610 7

Table 4-2 Emotions distribution in IEMOCAP and MELD dataset

IEMOCAP MELD

Train/Val Test | Train Val Test
Neutral 1325 384 | 4710 470 1256
Happiness/Joy 1195 442 | 1743 163 402
Anger 931 170 | 1109 153 345
Surprise - - 1205 150 281
Sadness 839 245 | 683 111 208
Disgust - - 271 22 68
Fear - - 268 40 50

37



KR A 208 3

4.2.2 Experimental setup

We choose ReLLU as the activation and apply the method of stochastic gradient
descent based on Adam!%! optimizer to train our network and all the hyperparameters
are optimized by grid search. We set the batch size and number of epochs to 32 and
100, respectively. In the IEMOCAP dataset, the window sizes of the past and future
contexts are all set to 10 because we have verified that window sizes of 8-12 show
better performance. The learning rate is 0.00005 for multimodality and 0.0001 for
unimodality training. In the MELD dataset, the window sizes of the past and future
contexts are all set to 6. The learning rate is set to 0.0001 for both unimodality and
multimodality training. And wy is set to 0.5 in both [IEMOCAP and MELD databases

to balance the effect of knowledge and semantics.

4.2.3 Comparison methods

For a comprehensive evaluation, we compare our method with the current ad-
vanced approaches and with the results of the ablation studies. All of the experiments
are trained on the utterance-level.

CNN[2!: A widely used architecture for both text and audio feature extraction
with strong effective performance. We employ it to extract utterance-level textual and
acoustic features; it does not contain contextual information.

LSTMs!: Adopted LSTM framework for unimodality and multimodality emo-
tion recognition based on audio and text, without exploring context information.

be-LSTM™: Utilized bidirectioinal LSTM network that takes as input the se-
quence of utterances in a video and extracts contextual unimodal and multimodal fea-
tures by modeling the dependencies among the input utterances.

DialogueRNNl: Employed three GRUs to model the dynamics of the speak-
er states, the context from the preceding utterances and the emotion of the preceding
utterances respectively. This method achieved state of the art in multimodal emotion
recognition in conversations.

DialogueGCN®!: Adopted GCN to leverage self and interspeaker dependence of
the interlocutors to model conversational context for textual emotion recognition.

ConS-GCN: Consider the semantic-sensitive contextual dynamics in the range of
past p and future f window size based on semantic graph.

ConK-GCN: We replace the semantic graph by knowledge graph, which explores

the contextual dynamics based on concept relatedness in conversations.
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ConSK-GCN: Integrating ConS-GCN and ConK-GCN jointly to leverage the se-
mantic and knowledge contribution to construct the new adjacency matrix of ConSK-
GCN.

4.2.4 Experimental results and analysis

4.2.4.1 Experiments on [IEMOCAP

Table 4.3 and 4.4 indicate the performance of both state of the arts and our ablation
studies for emotion recognition based on text modality. From this table, we observe that,
the methods that consider the context are much more effective than the methods that do
not, demonstrating the significance of context modeling. In addition, “DialogueRN-
N and “DialogueGCN” are both superior to “bc-LSTM”, highlighting the importance
of encoding speaker-level context while “bc-LSTM” only encodes sequential context.
Among all of the baselines, “DialogueGCN” shows the best performance because it
extracts information of the neighborhood contexts based on the graph convolution net-
work, and the emotion of the target utterance is usually strongly influenced by nearby
context.

Table 4-3 The accuracy-score (%) of comparative experiments of different methods for

unimodality (Text) emotion recognition. Average (w)= Weighted average; bold font denotes the
best performances.

Models Neutrality Anger Happiness Sadness Average (W)
CNN 59.11 77.06 64.03 62.04 63.90
LSTMs 72.92 70.00 55.20 63.67 64.38
Baselines bc-LSTM 76.04 75.88 67.65 67.35 71.31
DialogueRNN  81.51 66.47 86.43 72.24 79.37
DialogueGCN 74.22 77.06 87.56 85.31 81.57
Ablation Studies COnS-GCN 76.04 77.65 87.33 83.27 81.71
ConK-GCN 75.52 77.65 86.65 86.12 81.87
Proposed ConSK-GCN 74.48 80.00 87.78 89.39 82.92
Table 4-4 The F1-score (%) of comparative experiments of different methods for unimodality
(Text) emotion recognition.
Models Natural Anger Happiness Sadness Average (W)
CNN 59.50  65.17 69.36 60.68 64.02
LSTMs 7497  65.93 56.42 61.30 64.42
Baselines be-LSTM 67.51 72.88 75.51 70.06 71.60
DialogueRNN 7373 74.10 87.82 77.29 79.50
DialogueGCN  74.32  76.61 88.66 83.60 81.55
Ablation Studies ConS-GCN 74.68  77.65 88.74 83.27 81.79
ConK-GCN 7523  77.88 88.05 84.06 81.90
Proposed ConSK-GCN  75.66 78.84 88.79 86.39 82.89

According to the emotion theory introduced in!’®! that the Valence-Arousal s-
pace depicts the affective meanings of linguistic concepts. We believe that both Anger

and Happiness are explicit emotions in linguistic features with positive arousal, which
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are also contagious in the context. Therefore, the information extracted both through
“ConS-GCN” and “ConK-GCN?” that based on context construction affect similar for
recognizing them. By contrast, Sadness is relatively implicit in linguistic characteristics
with negative valence and negative arousal. Compared to “ConS-GCN”, “ConK-GCN”
have a significant improvement in Sadness detection, and we observe that the recog-
nition accuracy has increased by almost 3% as shown in Table 4.3, while it shows a
more significant increase by nearly 8% in Table 4.5. This illustrates the effectiveness
of constructing knowledge graph for contextual features extraction in the ERC task,
particularly in the analysis of implicit emotional utterances.

Encouragingly, the comparison shows that our proposed “ConSK-GCN” performs
better than all of the baseline approaches, with improvement of at least 1.3% in terms
of average accuracy and F1. Furthermore, “ConSK-GCN” also performs better than
baselines and ablation studies for each emotion detection in terms of F1. These results
indicate that the knowledge-aware contexts and semantic-aware contexts are comple-
mentary for extracting efficient contextual features.

Table 4.5 and 4.6 describes the performance of various approaches for emotion
recognition based on text and audio modalities. An examination of the results pre-
sented in this table shows that compared with the multimodal baselines, our proposed
“ConSK-GCN” method displays the best performance with near 4% improvement in
terms of both average accuracy and F1. This result highlights the importance of inte-

grating semantic-sensitive and knowledge-sensitive contextual information for emotion

recognition.
Table 4-5 The accuracy-score (%) of comparative experiments of different methods for

multi-modality (Text+Audio) emotion recognition.
Models Neutrality Anger Happiness Sadness Average(W)
LSTMs 69.53 73.53 66.74 70.61 69.30

Baselines bc-LSTM 79.95 78.82 70.14 73.88 75.10
DialogueRNN 86.20 84.71 79.64 75.10 81.47

Ablation Studies ConS-GCN 78.91 85.29 90.72 78.78 83.96
ConK-GCN 75.78 88.82 89.37 86.53 84.53

Proposed ConSK-GCN 78.13 87.06 93.67 82.86 85.82

Table 4-6 The F1-score (%) of Comparative experiments of different methods for
multimodality (Text+Audio) emotion recognition.

Models Natural Anger Happiness Sadness Average(W)
LSTMs 63.95 73.10 73.75 67.98 69.50
Baselines bc-LSTM 7049 7791 78.58 75.73 75.42
DialogueRNN  76.53  83.72 86.38 80.35 81.78
Ablation Studies ConS-GCN 77779  83.57 90.52 82.13 83.97
ConK-GCN 77.70  85.31 90.08 84.46 84.49
Proposed ConSK-GCN  79.89 84.33 91.90 84.76 85.74
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Furthermore, compared with unimodality in Table 4.3, the detection accuracy in
Neutrality, Anger and Happiness have been improved by 3.65%, 7.06% and 5.89%
respectively via the proposed “ConSK-GCN” with multimodality. These demonstrates
the importance of integrating acoustic and linguistic features that are complementary
in emotion recognition. However, there is an exception in Sadness detection that we
assume is due to the negative valence and negative arousal emotion of Sadness so that

similar to text features, the acoustic characteristics of Sadness are also implicit.
4.2.4.2 Experiments on MELD

Comparation with the state of the art: Table 4.7 and 4.8 depict the experimental
comparations between our model and previous works in emotion recognition with both
unimodality and multimodality. We can see from both table 4.7 and 4.8 that, our model
which constructs both knowledge-sensitive and semantics-sensitive contexts has a better
performance with more than 5.7% than the state of the arts in terms of weighted average
f1-score in both unimodal and multimodal emotion recognition.

However, the data ratio of disgust only accounts for 2.63% in MELD database,
while the percentage of fear is around 2.61%, therefore it is difficult to accurately dis-
tinguish these two emotions in ERC task. The task for emotion detection with small
data, which may depends on specific emotional characteristics, is left as future work.

Ablation Studies: To further research and validate the performance of the pro-
posed model, the comparative confusion matrices of classification results are shown in
Figure 4.6, 4.7 and 4.8 separately.

Compared with “ConS-GCN” and “ConK-GCN”, the results shown in “ConSK-
GCN” indicate that the knowledge-aware contexts and semantic-aware contexts are
complementary for extracting efficient contextual features for better emotion recogni-
tion. There are two exceptions about anger and surprise, the detection rate of which
is not highest in “ConSK-GCN”, however, the false detection rate in “ConS-GCN” and
“ConK-GCN” are also both far higher than “ConSK-GCN”, which means more samples

of anger and surprise have been misclassified.
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Neu - 0.05 0.00 0.07 0.05 0.05 0.00 Neu - 0.06 0.00 0.06 0.04 0.06 0.00
Ang| 0.21 0.52 0.00 0.10 0.13 0.04 0.00 Ang| 0.19 0.56 0.00 0.09 0.11 0.05 0.00
Dis| 032 0.34 0.01 0.06 0.15 0.12 0.00 Dis| 0.32 0.34 0.00 0.07 0.13 0.13 0.00

Joy | 022 0.08 0.00 0.61 0.07 0.02 0.00 Joy| 022 0.08 0.00 0.60 0.07 0.02 0.00
Sur| 0.11 0.10 0.00 0.11 0.68 0.01 0.00 Sur| 0.2 0.11 0.00 0.11 0.64 0.01 0.00

Sad| 0.36 0.06 0.00 0.08 0.07 0.33 0.00 Sad| 035 0.15 0.00 0.07 0.07 0.36 0.00
Fear| 0.26 0.18 0.00 0.10 0.20 0.26 0.00 Fear| 028 0.24 0.00 0.06 0.16 0.26 0.00
Neu Ang Dis Joy Sur Sad Fear Neu Ang Dis Joy Sur Sad Fear

(a) Unimodality (b) Multimodality

Figure 4-6 Confusion matrix of the proposed ConS-GCN.

Neu - 0.06 0.00 0.05 0.04 0.05 0.00 Neu - 0.05 0.00 0.06 0.04 0.07 0.00
Ang| 020 0.57 0.00 0.08 0.10 0.03 0.02 Ang| 020 0.55 0.00 0.08 0.10 0.07 0.00
Dis| 0.34 0.34 0.00 0.04 0.13 0.13 0.01 Dis | 0.31 0.35 0.00 0.04 0.12 0.16 0.01

Joy | 028 0.08 0.00 0.52 0.08 0.02 0.00 Joy | 0.24 0.09 0.00 0.60 0.04 0.03 0.00

Sur| 0.14 0.14 0.00 0.08 0.63 0.00 0.01 Sur| 012 0.14 0.00 0.10 0.62 0.02 0.00

Sad| 0.33 0.19 0.00 0.08 0.06 0.33 0.02 Sad| 031 0.13 0.00 0.07 0.06 0.42 0.00
Fear| 0.24 0.18 0.00 0.08 0.14 0.26 0.10 Fear| 0.30 0.22 0.00 0.06 0.08 0.34 0.00
Neu Ang Dis Joy Sur Sad Fear Neu Ang Dis Joy Sur Sad Fear

(a) Unimodality (b) Multimodality

Figure 4-7 Confusion matrix of the proposed ConK-GCN.

Table 4-7 Comparative experiments of different methods for unimodality (Text) emotion
recognition. F1-score (%) is used as the evaluation metric. W= Weighted average.
Models Neutral Anger Disgust Joy Surprise Sadness Fear W-F1
CNN® 67.3 12.2 0.0 326 451 19.6 0.0 455
LSTMs! 67.6 12.3 00 360 457 17.2 0.0 460
be-LSTM ™! 77.0 389 00 458 473 0.0 0.0 543
DialogueRNN!"! 73.7 41.5 0.0 476 449 23.4 54 551
DialogueGCN ®! - - - - - - - 581
ConS-GCN 77.0 50.3 29 588 591 35.8 0.0 620
ConK-GCN 80.0 51.6 00 563 58.1 35.1 13.7 619

ConSK-GCN (Ours)  78.1 54.1 0.0 61.1  61.0 36.9 10.5 63.8

We can see from Figure 4.8 that, compared with (a), the results shown in (b) indi-
cate that multimodality helps to improve the accuracy of emotion detection in conver-
sations. The results demonstrate the importance of integrating acoustic and linguistic

features that are complementary in emotion recognition.
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Table 4-8 Comparative experiments of different methods for multimodality (Text+ Audio)
emotion recognition.
Models Neutral Anger Disgust Joy Surprise Sadness Fear W-F1
LSTMsP! 68.1 314 0.0 345 449 7.24 0.0 476
be-LSTM ! 76.4 44.5 0.0 49.7 48.4 15.6 0.0 5638
DialogueRNN!7! 73.2 45.6 0.0 53.2 51.9 24.8 0.0 570
ConS-GCN 77.7 52.2 0.0 60.4 58.9 37.0 0.0 629
ConK-GCN 77.5 52.6 0.0 60.9 62.0 333 0.0 63.0
ConSK-GCN (Ours)  78.8 534 0.0 63.2  60.1 38.9 0.0 643
Neu - 0.04 0.00 0.08 0.03 0.04 0.00 Neu - 0.03 0.00 0.07 0.03 0.05 0.00
Ang 0.23 0.51 0.00 0.11 0.10 0.05 0.00 Ang 0.23 0.51 0.00 0.11 0.10 0.06 0.00
Dis 0.34 0.28 0.00 0.07 0.12 0.19 0.00 Dis| 0.34 0.28 0.00 0.07 0.12 0.19 0.00
Joy| o021 0.06 0.00 0.66 0.05 0.02 0.00 Joy | 0.21 0.04 0.00 0.67 0.05 0.02 0.00
Sur 0.16 0.12 0.00 0.1 0.59 0.02 0.00 Sur| 0.15 0.11 0.00 0.1 0.61 0.02 0.00
Sad 0.37 0.12 0.00 0.09 0.07 0.37 0.00 Sad 0.36 0.09 0.00 0.09 0.07 0.39 0.00
Fear| 036 0.24 0.00 0.06 0.08 0.26 0.00 Fear| 030 0.20 0.00 0.08 0.12 0.30 0.00
Neu Ang Dis Joy Sur Sad Fear Neu Ang Dis Joy Sur Sad  Fear

(a) Unimodality

Figure 4-8

(b) Multimodality

Confusion matrix of the proposed ConSK-GCN.

4.2.5 Effect of Context Window

The accuracy of emotion detection in conversation varies with the context window.
From Figure 4.9 (a), we can see that window sizes of 8-12 show better performance, and

it reaches the peak when the past and future contexts are all set to 10 in the [IEMOCAP

dataset.
Effect of Context Window in IEMOCAP
as
_ B4
£
2
g
283
82 4
unimodal (text)
81 multimedal {text+audio)
a 6 8 10 12 14 16
context window
(a) IEMOCAP
Figure 4-9

In the MELD dataset, we can conclude from the Figure 4.9 (b) that the window

sizes of the past and future contexts are all set to 6 have the best performance, we think
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it is because the average conversation length is only 9.6 in MELD.

4.2.6 Case study

To verify the effectiveness of external knowledge and semantic construction in
conversational emotion recognition, we visualize several typical samples, as shown in
Figure 4.10.

We can observe that compared to “ConS-GCN”, which only considers the seman-
tics of context, our proposed “ConK-GCN” and “ConSK-GCN” that take the advan-
tages of external knowledge can effectively capture implicit emotional characteristics,
as shown in utterance 1-3. We can see from utterance 4 that, in some cases, the mod-
eling of semantics-sensitive or knowledge-sensitive context alone is not sufficient to
accurately distinguish the emotion, but it’s helpful when leveraging these two factors
together.

Our model misclassifies the Neutrality emotion of utterance 5; we attribute this
result to the fact that the concept embeddings of the utterance are enriched by emo-
tional knowledge, misleading the model and resulting in wrong detection, for example,
“cool” in utterance 5 represents modal particle with no actual meaning, while it has sev-
eral related implications such as “unemotional”, “chill”, and “unfriendly” with negative
orientation in knowledge bases, which leads to the false detection.

Cases in utterance 6-7 and the cases in utterance 8-9 are in the same situation with
opposite results, where “ConS-GCN” weights more than “ConK-GCN” in “ConSK-
GCN?” learning, but information in “ConS-GCN” oriented to wrong direction in utter-
ance 6-7, vice verse in utterance 8-9. External knowledge, sometimes it can enrich
the implicit concepts with helpful implications, however, emotion understanding is a
challenging task as it not only depends on semantic understanding but also contextual
reasoning, it is important to make a balance between them. And the impact of balance
weight between contextual semantics and external knowledge will be explained in the

next section 4.6.

4.2.7 Effect of wy

In order to find an optimal balance between knowledge weight and semantic weight
in our ConSK-GCN learning, we make one pair of comparative experiments, that is

unimodality and multimodality separately based on IEMOCAP and MELD databases.
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Effect of balance weight (w_k) in IEMOCAP Effect of balance weight (w_k} in MELD
86
64.0
a5
63.5
@ 84 unimodal (text) -4
g multimodal (text+audic) g 63.0
a3
62.5
ol
& L :::::m:;;:::snaunm]
0.0 0.2 0.4 0.6 08 10 0.0 0.2 0.4 0.6 08 10
balance weight w_k balance weight w_k
(a) IEMOCAP (b) MELD
Figure 4-11 Effect of balance weight (wy) for emotion recognition in different dataset.

We can conclude from Figure 4.11 that, both knowledge-aware and semantic-
aware contextual construction are important for emotion recognition in conversation,
as the f1-score of leveraging knowledge and semantics together (wy ranges from 0.1 to
0.9) increased dramatically than single (w; equal to 0 or 1). However, it seems that the
effect of different balance weights (0.1 to 0.9) on emotion detection is not conspicuous,
because in Figure 4.11 (a) and (b), the difference in the f1-score of different balance
weight does not exceed 1%. Therefore, we set the balance weight wy to 0.5 in both

IEMOCAP and MELD databases to balance the effect of knowledge and semantics.

4.3 Conclusion

In this section, we proposed a new conversational semantic- and knowledge-guided
graph convolutional network (ConSK-GCN) for multimodal emotion recognition. In
our approach, we construct the contextual interactions of inter- and intra-speaker via
a conversational graph-based convolutional network based on multimodal representa-
tions. Then incorporate semantic graph and commonsense knowledge graph jointly to
model the semantic-sensitive and knowledge-sensitive contextual dynamics. Compar-
ative experiments on both IEMOCAP and MELD databases show that our approach
significantly outperforms the state of the art, illustrating the importance of both the

semantic and commonsense knowledges in contextual emotion recognition.
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CHAPTER 5 Conclusions and Future Works

5.1 Summary

In this thesis, we proposed two models for extracting effective emotion features
for emotion recognition. Firstly, we proposed a sentiment similarity-oriented atten-
tion mechanism, which can be used to guide the network to extract emotion-related
information from input sentences to improve classification and regression accuracy
in context-independent emotion recognition task. Secondly, we proposed a new con-
versational semantic- and knowledge-guided graph convolutional network (ConSK-
GCN) for context-dependent emotion recognition, which leveraging both text and audio
modaliteis. In this approach, we construct the contextual interactions of inter- and intra-
speaker via a conversational graph-based convolutional network based on multimodal
representations. Then incorporate semantic graph and commonsense knowledge graph
jointly to model the semantic-sensitive and knowledge-sensitive contextual dynamics.
Comparative experiments with the state-of-the-art approaches show that our approach
can significantly improve the performance of emotion detection, illustrating the effect

of our proposed models.

5.2 Contributions

This thesis proposed a a sentiment similarity-oriented attention mechanism and a
new semantic- and knowledge-aware graph convolutional neural network for emotion
recognition. Experiments on two databases demonstrate that the proposed methodolo-
gy can effectively improve the accuracy of emotion detection in conversation, especially
for the document with implicit emotion expression. Knowledge base enriched the se-
mantics of each utterance in conversation with several related concepts, and affective
lexicon enhance the emotion polarity of each concept in the conversation. Moreover,
both two technologies can be applied as an important part of the human-robot system

to enhance emotional interaction and improve user experience.
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5.3 Future works

This thesis have applied audio modality and text modality for emotion recogni-
tion. Experimental results demonstrate that multimodal representations can help to in-
crease the accurate detection of emotion in conversations. However, human language
prossesses not only spoken words and tone of voice but also facial attributes. Visual
characteristic is one of the significant factors in emotion detection and further research
of this modality in left as the remaining work.

Furthermore, modality alignment is a challenging but important process in the task
of multimodal emotion recognition. However, the heterogeneities across modalities
increase it’s difficulty. For example, variable receiving frequency of audio and vision
streams leads to different receptors, which makes it difficult to obtain optimal mapping
between them. The face with a pair of frowning eyebrows may relate to a negative word
spoken in the past. In our architecture, we just concatenate the acoustic and linguistic
representations, with no modality alignment, which is outside the scope of this thesis,

and should be further researched in the future work.
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